以太網交換機選購技巧及原則
以太網交換機有很多值得學習的地方,這里我們主要介紹以太網交換機選購技巧及原則。目前以太網交換機在傳送源和目的端口的數據包時通常采用直通式交換、存儲轉發式和碎片隔離方式三種數據包交換方式,下面分別簡述。
1、直通交換方式
采用直通交換方式的以太網交換機可以理解為在各端口間是縱橫交*的線路矩陣電話交換機。它在輸入端口檢測到一個數據包時,檢查該包的包頭,獲取包的目的地址,啟動內部的動態查找表轉換成相應的輸出端口,在輸入與輸出交*處接通,把數據包直通到相應的端口,實現交換功能。由于它只檢查數據包的包頭(通常只檢查14個字節),不需要存儲,所以切入方式具有延遲小,交換速度快的優點(所謂延遲(Latency)是指數據包進入一個網絡設備到離開該設備所花的時間)。
它的缺點主要有三個方面:一是因為數據包內容并沒有被以太網交換機保存下來,所以無法檢查所傳送的數據包是否有誤,不能提供錯誤檢測能力;第二,由于沒有緩存,不能將具有不同速率的輸入/輸出端口直接接通,而且容易丟包。如果要連到高速網絡上,如提供快速以太網(100BASE-T)、FDDI或ATM連接,就不能簡單地將輸入/輸出端口“接通”,因為輸入/輸出端口間有速度上的差異,必須提供緩存;第三,當以太網交換機的端口增加時,交換矩陣變得越來越復雜,實現起來就越困難。
2、存儲轉發方式
存儲轉發(Store and Forward)是計算機網絡領域使用得最為廣泛的技術之一,以太網交換機的控制器先將輸入端口到來的數據包緩存起來,先檢查數據包是否正確,并過濾掉沖突包錯誤。確定包正確后,取出目的地址,通過查找表找到想要發送的輸出端口地址,然后將該包發送出去。正因如此,存儲轉發方式在數據處理時延時大,這是它的不足,但是它可以對進入以太網交換機的數據包進行錯誤檢測,并且能支持不同速度的輸入/輸出端口間的交換,可有效地改善網絡性能。它的另一優點就是這種交換方式支持不同速度端口間的轉換,保持高速端口和低速端口間協同工作。實現的辦法是將10Mbps低速包存儲起來,再通過100Mbps速率轉發到端口上。
3、碎片隔離式(Fragment Free)
這是介于直通式和存儲轉發式之間的一種解決方案。它在轉發前先檢查數據包的長度是否夠64個字節(512 bit),如果小于64字節,說明是假包(或稱殘幀),則丟棄該包;如果大于64字節,則發送該包。該方式的數據處理速度比存儲轉發方式快,但比直通式慢,但由于能夠避免殘幀的轉發,所以被廣泛應用于低檔交換機中。
使用這類交換技術的交換機一般是使用了一種特殊的緩存。這種緩存是一種先進先出的FIFO(First In First Out),比特從一端進入然后再以同樣的順序從另一端出來。當幀被接收時,它被保存在FIFO中。如果幀以小于512比特的長度結束,那么FIFO中的內容(殘幀)就會被丟棄。因此,不存在普通直通轉發交換機存在的殘幀轉發問題,是一個非常好的解決方案。數據包在轉發之前將被緩存保存下來,從而確保碰撞碎片不通過網絡傳播,能夠在很大程度上提高網絡傳輸效率。
主流堆棧交換技術
通過我們前面的介紹已經知道,按交換機工作在OSI/RM堆棧協議層來分的話,目前的以太網交換機主要有第二層、第三層和第四層交換機,它們都有其對應的主流交換技術,下面分別予以介紹。
1、第二層交換技術
90年代初,在網絡系統集成模式中大量引入了局域網交換機。局域網交換機是一種第二層網絡設備,以太網交換機在操作過程中不斷地收集資料去建立它本身的地址表,這個表相當簡單,主要標明某個MAC地址是在哪個端口上被發現的。當交換機接收到一個數據封包時,它檢查該封包的目的MAC地址,核對一下自己的地址表以決定從哪個端口發送出去。而不是象集線器那樣,任何一個發送方數據都會出現在集線器的所有端口上(不管是否為你所需)。這時的交換機因為其只能工作在OSI/RM的第二層,所以也就稱之為第二層交換機,所采用的技術也就稱之為“第二層交換技術”。
“第二層交換”是指OSI第二層或稱MAC層的交換。第二層交換機的引入,使得網絡站點間可獨享帶寬,消除了無謂的碰撞檢測和出錯重發,提高了傳輸效率,在交換機中可并行的維護幾個獨立的、互不影響的通信進程。在交換網絡環境下,用戶信息只在源節點與目的節點之間進行傳送,其他節點是不可見的。但有一點例外,當某一節點在網上發送廣播或多目廣播時,或某一節點發送了一個交換機不認識的MAC地址封包時,以太網交換機上的所有節點都將收到這一廣播信息。整個交換環境構成一個大的廣播域。也就是說第二層交換機仍可能存在“廣播風暴”,廣播風暴會使網絡的效率大打折扣,但出現情況的情形的比率比起集線器來說要少許多。
第二層交換仍存在“廣播風暴”的弱點,同時,使用第二層交換并不能給路由器的功能帶來什么進步。這樣的結果是,第二層交換只能在本地不含任何路由器的工作組中取得性能的提高。在使用第二層交換的工作組之間,通過路由器的端到端性能會因為路由器阻塞而掉包,從而導致實質上的性能下降。正因如此,其于路由方式的第三交換技術順應時代的需要而產生了。
2.第三層交換技術
在網絡系統集成的技術中,直接面向用戶的***層接口和第二層交換技術方面已得到令人滿意的答案。但是,作為網絡核心、起到網間互連作用的路由器技術卻沒有質的突破。傳統的路由器基于軟件,協議復雜,與局域網速度相比,其數據傳輸的效率較低。但同時它又作為網段(子網,虛擬網)互連的樞紐,這就使傳統的路由器技術面臨嚴峻的挑戰。隨著Internet、Intranet的迅猛發展和B/S(瀏覽器/服務器)計算模式的廣泛應用,跨地域、跨網絡的業務急劇增長,業界和用戶深感傳統的路由器在網絡中的瓶頸效應,改進傳統的路由技術已迫在眉睫。在這種情況下,一種新的路由技術應運而生,這就是第三層交換技術。說它是路由器,因為它可操作在網絡協議的第三層,是一種路由理解設備并可起到路由決定的作用;說它是交換器,是因為它的速度極快,幾乎達到第二層交換的速度。
一個具有第三層交換功能的設備是一個帶有第三層路由功能的第二層交換機,但它是二者的有機結合,并不是簡單的把路由器設備的硬件及軟件簡單地疊加在以太網交換機上。從硬件的實現上看,目前,第二層交換機的接口模塊都是通過高速背板/總線(速率可高達幾十Gbit/s)交換數據的。在第三層交換機中,與路由器有關的第三層路由硬件模塊也插接在高速背板/總線上,這種方式使得路由模塊可以與需要路由的其他模塊間高速的交換數據,從而突破了傳統的外接路由器接口速率的限制(10Mbit/s——100Mbit/s)。在軟件方面,第三層交換機也有重大的舉措,它將傳統的基于軟件的路由器軟件進行了界定。目前基于第三層交換技術的第三層交換機得到了廣泛的應用,并得到了用戶一致的贊同。