成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

四十五種光纖、光纜傳統知識

網絡 網絡設備
本文總結了45個光纖光纜的基礎知識點,僅供大家學習參考。下面,就讓我們一起來學習。

1. 簡述光纖的組成。

答:光纖由兩個基本部分組成:由透明的光學材料制成的芯和包層、涂敷層。

2. 描述光纖線路傳輸特性的基本參數有哪些?

答:包括損耗、色散、帶寬、截止波長、模場直徑等。

3. 產生光纖衰減的原因有什么?

答:光纖的衰減是指在一根光纖的兩個橫截面間的光功率的減少,與波長有關。造成衰減的主要原因是散射、吸收以及由于連接器、接頭造成的光損耗。

4. 光纖衰減系數是如何定義的?

答:用穩態中一根均勻光纖單位長度上的衰減(dB/km)來定義。

[[219521]]

5. 插入損耗是什么?

答:是指光傳輸線路中插入光學部件(如插入連接器或耦合器)所引起的衰減。

6. 光纖的帶寬與什么有關?

答:光纖的帶寬指的是:在光纖的傳遞函數中,光功率的幅值比零頻率的幅值降低50%或3dB時的調制頻率。光纖的帶寬近似與其長度成反比,帶寬長度的乘積是一常量。

7. 光纖的色散有幾種?與什么有關?

答:光纖的色散是指一根光纖內群時延的展寬,包括模色散、材料色散及結構色散。取決于光源、光纖兩者的特性。

8. 信號在光纖中傳播的色散特性怎樣描述?

答:可以用脈沖展寬、光纖的帶寬、光纖的色散系數三個物理量來描述。

9. 什么是截止波長?

答:是指光纖中只能傳導基模的最短波長。對于單模光纖,其截止波長必須短于傳導光的波長。

10. 光纖的色散對光纖通信系統的性能會產生什么影響?

答:光纖的色散將使光脈沖在光纖中傳輸過程中發生展寬。影響誤碼率的大小,和傳輸距離的長短,以及系統速率的大小。

11. 什么是背向散射法?

答:背向散射法是一種沿光纖長度上測量衰減的方法。光纖中的光功率絕大部分為前向傳播,但有很少部分朝發光器背向散射。在發光器處利用分光器觀察背向散射的時間曲線,從一端不僅能測量接入的均勻光纖的長度和衰減,而且能測出局部的不規則性、斷點及在接頭和連接器引起的光功率損耗。

12. 光時域反射計(OTDR)的測試原理是什么?有何功能?

答:OTDR基于光的背向散射與菲涅耳反射原理制作,利用光在光纖中傳播時產生的后向散射光來獲取衰減的信息,可用于測量光纖衰減、接頭損耗、光纖故障點定位以及了解光纖沿長度的損耗分布情況等,是光纜施工、維護及監測中必不可少的工具。其主要指標參數包括:動態范圍、靈敏度、分辨率、測量時間和盲區等。

13. OTDR的盲區是指什么?對測試會有何影響?在實際測試中對盲區如何處理?

答:通常將諸如活動連接器、機械接頭等特征點產生反射引起的OTDR接收端飽和而帶來的一系列“盲點”稱為盲區。

光纖中的盲區分為事件盲區和衰減盲區兩種:由于介入活動連接器而引起反射峰,從反射峰的起始點到接收器飽和峰值之間的長度距離,被稱為事件盲區;光纖中由于介入活動連接器引起反射峰,從反射峰的起始點到可識別其他事件點之間的距離,被稱為衰減盲區。

對于OTDR來說,盲區越小越好。盲區會隨著脈沖展寬的寬度的增加而增大,增加脈沖寬度雖然增加了測量長度,但也增大了測量盲區,所以,在測試光纖時,對OTDR附件的光纖和相鄰事件點的測量要使用窄脈沖,而對光纖遠端進行測量時要使用寬脈沖。

14. OTDR能否測量不同類型的光纖?

答:如果使用單模OTDR模塊對多模光纖進行測量,或使用一個多模OTDR模塊對諸如芯徑為62.5mm的單模光纖進行測量,光纖長度的測量結果不會受到影響,但諸如光纖損耗、光接頭損耗、回波損耗的結果是不正確的。所以,在測量光纖時,一定要選擇與被測光纖相匹配的OTDR進行測量,這樣才能得到各項性能指標均正確的結果。

15. 常見光測試儀表中的“1310nm”或“1550nm”指的是什么?

答:指的是光信號的波長。光纖通信使用的波長范圍處于近紅外區,波長在800nm~1700nm之間。常將其分為短波長波段和長波長波段,前者指850nm波長,后者指1310nm和1550nm。

16. 在目前商用光纖中,什么波長的光具有最小色散?什么波長的光具有具有最小損耗?

答:1310nm波長的光具有最小色散,1550nm波長的光具有最小損耗。

17. 根據光纖纖芯折射率的變化情況,光纖如何分類?

答:可分為階躍光纖和漸變光纖。階躍光纖帶寬較窄,適用于小容量短距離通信;漸變光纖帶寬較寬,適用于中、大容量通信。

18. 根據光纖中傳輸光波模式的不同,光纖如何分類?

答:可分為單模光纖和多模光纖。單模光纖芯徑約在1~10μm之間,在給定的工作波長上,只傳輸單一基模,適于大容量長距離通信系統。多模光纖能傳輸多個模式的光波,芯徑約在50~60μm之間,傳輸性能比單模光纖差。

在傳送復用保護的電流差動保護時,安裝在變電站通信機房的光電轉換裝置與安裝在主控室的保護裝置之間多用多模光纖。

19. 階躍折射率光纖的數值孔經(NA)有何意義?

答:數值孔經(NA)表示光纖的收光能力, NA越大,光纖收集光線能力越強。

20. 什么是單模光纖的雙折射?

答:單模光纖中存在兩個正交偏振模式,當光纖不完全園柱對稱時,兩個正交偏振模式并不是簡并的,兩個正交偏振的模折射率的差的絕對值即為雙折射。

21. 最常見的光纜結構有幾種?

答:有層絞式和骨架式兩種。

22. 光纜主要由什么組成?

答:主要由:纖芯、光纖油膏、護套材料、PBT(聚對苯二甲酸丁二醇酯)等材料組成。

23. 光纜的鎧裝是指什么?

答:是指在特殊用途的光纜中(如海底光纜等)所使用的保護元件(通常為鋼絲或鋼帶)。鎧裝都附在光纜的內護套上。

24. 光纜護套用什么材料?

答:光纜護套或護層通常由聚乙烯(PE)和聚氯乙烯(PVC)材料構成,其作用是保護纜芯不受外界影響。

25. 列舉在電力系統中應用的特殊光纜。

答:主要有三種特殊光纜:

  • 地線復合光纜(OPGW),光纖置于鋼包鋁絞結構的電力線內。OPGW光纜的應用,起到了地線和通信的雙功能,有效地提高了電力桿塔的利用率。
  • 纏繞式光纜(GWWOP),在已有輸電線路的地方,將這種光纜纏繞或懸掛在地線上。
  • 自承式光纜(ADSS),有很強的抗張能力,可直接掛在兩座電力桿塔之間,其***跨距可達1000m。

26. OPGW光纜的應用結構有幾種?

答:主要有:1)塑管層絞+ 鋁管的結構;2) 中心塑管+ 鋁管的結構;3) 鋁骨架結構;4) 螺旋鋁管結構;5) 單層不銹鋼管結構( 中心不銹鋼管結構、不銹鋼管層絞結構);6) 復合不銹鋼管結構( 中心不銹鋼管結構、不銹鋼管層絞結構)。

27. OPGW光纜纜芯外的絞線線材主要由什么組成?

答:以AA線(鋁合金線) 和AS線材(鋁包鋼線)組成。

28. 要選擇OPGW光纜型號,應具備的技術條件有哪些?

答:1) OPGW光纜的標稱抗拉強度(RTS) (kN);2) OPGW光纜的光纖芯數(SM);3) 短路電流(kA);4) 短路時間(s);5) 溫度范圍(℃)。

29. 光纜的彎曲程度是如何限制的?

答:光纜彎曲半徑應不小于光纜外徑的20倍,施工過程中(非靜止狀態)不小于光纜外徑的30倍。

30. 在ADSS光纜工程中,需注意什么?

答:有三個關鍵技術:光纜機械設計、懸掛點的確定和配套金具的選擇與安裝。

31. 光纜金具主要有哪些?

答:光纜金具是指安裝光纜使用的硬件,主要有:耐張線夾,懸垂線夾、防振器等。

32. 光纖連接器有兩個最基本的性能參數,分別是什么?

答:光纖連接器俗稱活接頭.對于單纖連接器光性能方面的要求,重點是在介入損耗和回波損耗這兩個最基本的性能參數上。

33. 常用的光纖連接器有幾類?

答:按照不同的分類方法,光纖連接器可以分為不同的種類,按傳輸媒介的不同可分為單模光纖連接器和多模光纖連接器;按結構的不同可分為FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各種型式;按連接器的插針端面可分為FC、PC(UPC)和APC。常用的光纖連接器:FC/PC型光纖連接器、SC型光纖連接器,LC型光纖連接器。

34. 在光纖通信系統中,常見下列物品,請指出其名稱。

AFC、FC 型適配器 ST型適配器 SC型適配器 FC/APC、FC/PC型連接器 SC型連接器 ST型連接器 LC型跳線 MU型跳線 單模或多模跳線

35. 什么是光纖連接器的介入損耗(或稱插入損耗)?

答: 什么是光纖連接器的回波損耗(或稱反射衰減、回損、回程損耗)?

36. 什么是光纖連接器的回波損耗(或稱反射衰減、回損、回程損耗)?

答:是衡量從連接器反射回來并沿輸入通道返回的輸入功率分量的一個量度,其典型值應不小于25dB。

37. 發光二極管和半導體激光器發出的光最突出的差別是什么?

答:發光二極管產生的光是非相干光,頻譜寬;激光器產生的光是相干光,頻譜很窄。

38. 發光二極管(LED)和半導體激光器(LD)的工作特性最明顯的不同是什么?

答:LED沒有閾值,LD則存在閾值,只有注入電流超過閾值后才會產生激光。

39. 單縱模半導體激光器常用的有哪兩種?

答:DFB激光器和DBR激光器,二者均為分布反饋激光器,其光反饋是由光腔內的分布反饋布拉格光柵提供的。

40. 光接收器件主要有哪兩種?

答:主要有光電二極管(PIN管)和雪崩光電二極管(APD)。

41. 光纖通信系統的噪聲產生的因素有哪些?

答:有由于消光比不合格產生的噪聲,光強度隨機變化的噪聲,時間抖動引起的噪聲,接收機的點噪聲和熱噪聲,光纖的模式噪聲,色散導致的脈沖展寬產生的噪聲,LD的模分配噪聲,LD的頻率啁啾產生的噪聲以及反射產生的噪聲。

42. 目前用于傳輸網建設的光纖主要有哪些?其主要特點是什么?

答:主要有三種,即G.652常規單模光纖、G.653色散位移單模光纖和G.655非零色散位移光纖。

  • G.652單模光纖在C波段1530~1565nm和L波段1565~1625nm的色散較大,一般為17~22psnm?km,系統速率達到2.5Gbit/s以上時,需要進行色散補償,在10Gbit/s時系統色散補償成本較大,它是目前傳輸網中敷設最為普遍的一種光纖。
  • G.653色散位移光纖在C波段和L波段的色散一般為-1~3.5psnm?km,在1550nm是零色散,系統速率可達到20Gbit/s和40Gbit/s,是單波長超長距離傳輸的***光纖。但是,由于其零色散的特性,在采用DWDM擴容時,會出現非線性效應,導致信號串擾,產生四波混頻FWM,因此不適合采用DWDM。
  • G.655非零色散位移光纖:G.655非零色散位移光纖在C波段的色散為1~6psnm?km,在L波段的色散一般為6~10psnm?km,色散較小,避開了零色散區,既抑制了四波混頻FWM,可用于DWDM擴容,也可以開通高速系統。新型的G.655光纖可以使有效面積擴大到一般光纖的1.5~2倍,大有效面積可以降低功率密度,減少光纖的非線性效應。
  • 43. 什么是光纖的非線性?

答:是指當入纖光功率超過一定數值后,光纖的折射率將與光功率非線性相關,并產生拉曼散射和布里淵散射,使入射光的頻率發生變化。

44. 光纖非線性對傳輸會產生什么影響?

答:非線性效應會造成一些額外損耗和干擾,惡化系統的性能。WDM系統光功率較大并且沿光纖傳輸很長距離,因此產生非線性失真。非線性失真有受激散射和非線性折射兩種。其中受激散射有拉曼散射和布里淵散射。以上兩種散射使入射光能量降低,造成損耗。在入纖功率較小時可忽略。

45. 什么是PON(無源光網絡)?

答:PON是本地用戶接入網中的光纖環路光網絡,基于無源光器件,如耦合器、分光器。

責任編輯:趙寧寧 來源: 安防群
相關推薦

2015-05-26 12:58:09

光纖

2015-08-19 14:16:50

光纖光纜

2009-07-11 14:10:14

2009-09-01 18:15:56

IBM大型機主機

2010-09-07 16:57:41

光纖

2015-06-02 16:54:08

光纖光纜

2012-05-03 10:59:07

光纖

2009-12-30 14:54:23

城域光纖光纜網

2017-02-24 10:53:17

FTTH光纖光纜

2014-06-03 09:59:13

光纖光纜微管氣吹技術

2009-07-18 14:26:38

光傳送網光纖光纜技術

2011-03-01 12:29:13

光纖

2015-03-23 09:37:52

光纖光纜網線電纜

2013-10-15 09:39:58

光纖技術綜合布線

2009-12-25 16:45:35

城域網技術

2015-04-23 13:09:46

光纖光纜

2009-07-30 16:11:20

光纖光纜通信電纜

2015-03-12 10:42:48

綜合布線光纜光纖

2012-06-01 10:24:19

光纖光纖光纜

2009-07-29 19:38:04

帶狀光纜布線
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 亚洲精品一区二区三区蜜桃久 | 成人视屏在线观看 | 欧美黄色性生活视频 | 在线观看国产视频 | 精品免费国产一区二区三区四区 | 亚洲欧美一区二区三区1000 | 性在线 | 久久99精品久久久久 | 99视频入口| 久久久精品国产 | 欧美精品久久久久 | 中文字幕日韩一区 | 亚洲国产精品一区 | 波多野结衣一二三区 | 中文字幕亚洲欧美日韩在线不卡 | 亚洲欧美一区二区三区1000 | 成人久久18免费网站图片 | 美女视频一区二区三区 | 国产成人免费在线 | 国产精品久久久久久婷婷天堂 | 久久精品99国产精品日本 | 中文字幕在线观看视频一区 | 亚洲资源站 | 免费九九视频 | 一区二区中文字幕 | 91在线精品视频 | 国产精品亚洲一区二区三区在线 | 九九久久这里只有精品 | 亚洲一区二区精品视频 | 欧美精品在线免费观看 | 国产精品久久久久久婷婷天堂 | 最新中文字幕 | 91精品久久久久久久久久入口 | 国产精品爱久久久久久久 | 91精品国产91久久久久福利 | 国产精品自产av一区二区三区 | 欧美黄在线观看 | 欧美日韩国产精品激情在线播放 | 欧美一级免费 | 97精品一区二区 | 精品国产免费一区二区三区五区 |