成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

大數據的十大流行誤區,你中了幾個?

大數據
作為一項不斷發展的技術和相對較新的概念,大數據其實存在極少的誤區。但是,如果我們不理清這一些極少的誤區,那么不正確的理解可能會導致嚴重后果。

技術和科學每天都在觀察革命性的進步,企業正在努力從中汲取更大的利益。數據分析是這樣一個領域,他們利用大數據和數據科學,將大量數據與業務戰略相結合。

實際上,大數據對所有企業都有合理的承諾,無論其規模如何。通過大數據分析,企業可以獲得洞察力,幫助他們不僅可以增加收入,還可以了解他們的服務和產品中的差距。

讓我們來看看最常見的大數據誤區

作為一項不斷發展的技術和相對較新的概念,大數據其實存在極少的誤區。但是,如果我們不理清這一些極少的誤區,那么不正確的理解可能會導致嚴重后果。 

[[260826]]

因此,在這篇文章中,慧都網將分享當下流行的大數據誤區和相應的大數據事實,以了解真相。這將幫助您解決這些大數據誤區,并確保業務正常運作。

誤區1:大數據無處不在

事實:目前,大數據技術和服務確實是使用率創歷史新高的行業的關注焦點。但是,Gartner的大數據事實和數據顯示,在所有組織中,只有73%的組織正在計劃和投資大數據。但是,它們仍處于大數據采用的萌芽階段。

有趣的是,只有13%的受訪組織部署了大數據解決方案。Gartner的大數據事實表明,組織面臨的主要挑戰是如何通過適當的策略從大數據中獲取價值。

除此之外,由于它是一項復雜的技術,許多組織在試驗階段遇到障礙,因為它們沒有將技術與具體的用例和業務流程聯系起來。

誤區2:大數據都與大小有關

事實: 大數據的特點是5V——Volume(體積)、Velocity(速度),Variety(品種),Veracity(準確性)和Value(值)。雖然處理大量數據是大數據的主要特征之一, 然而數量僅僅是大數據的主要定義特征。此外,數據的其他功能同樣重要。

例如,由于數據以高速處理需求快速進入,因此非常需要數據處理。因此,處理得越快,您就可以獲得更新的相關結果。

同樣,大數據有多種格式。因此,Variety是大數據的另一個重要特征,它與挑戰和創新解決方案相結合,以克服這些挑戰。

因此,必須考慮大數據超出數據的大小,并應考慮其速度和多樣性。此外,如果我們不考慮具有同等重要性的其他特征,它可能會將簡單的解決方案變成復雜的解決方案,從長遠來看會導致成本,存儲和問題。

誤區3:大數據可以預測業務未來的一切

事實:分析可以使用大數據預測趨勢,但不是推動業務發展的數據。企業有許多因素,如經濟,人力資源,技術等等。因此,當涉及到預測業務的未來時,您無法通過數據預測某些事情。

那么,大數據為數據分析做了什么?通過比較歷史數據,大數據進行的預測推斷將來會發生什么。這些歷史數據顯示了過去發生的事情。即使您正在使用實時數據進行分析,它也將成為一些概率論的結果。因此,它不是100%正確。但是,如果實驗數據越多且相關性越高,預測結果將更準確。

但實際上,大數據事實是,即使您使用復雜的統計分析,它也往往無法預測正確的結果。看選舉民意調查!

誤區4:大數據意味著大預算,而且適用于大公司

事實: 我們已經看到像跨國公司和政府機構這樣的組織投入巨資建立大規模數據中心和高端技術來實施大數據。不僅如此,聘用熟練的大數據人員和數據科學家也是一件非常昂貴的事情,因為他們的需求因市場資源緊張而很高。

但是,時間已經改變。隨著其越來越有用,像Apache這樣的供應商降低了大數據工具的許可成本,使其更便宜。除此之外,他們還提出了新的工具和技術,旨在幫助企業收集數據。

除此之外,我們必須記住,云計算還能夠以較低的成本為初創企業和小型組織提供大數據技術和平臺。因此,所有類型的組織都可以負擔得起大數據。

誤區5:機器學習概念與大數據有關

事實:機器學習經常處理大數據。但是,機器學習的基本概念是使用這些數據來建模底層流程以便更好地利用。此外,機器學習完全基于機器學習算法,該算法可以解析數據集,然后應用通過它學習的內容來做出有意義的決策。

因此,大數據和機器學習相結合可以提供有價值的見解。

誤區6:數據倉庫不需要大數據

事實:首先,數據倉庫是一種架構,而大數據純粹是一種技術。因此,人們不能在技術上取代其他人。像大數據這樣的技術可以存儲和管理大量數據,以合理的低成本將它們用于不同的大數據解決方案。

另一方面,作為框架數據倉庫組織數據以提供它的單個版本。它整合來自不同來源的數據,并以易讀的方式組織它們。它還具有數據沿襲功能,有助于識別數據的來源。

除此之外,我們知道可以在不受現有數據倉庫實施和業務分析干擾的情況下執行大數據分析。

因此,數據倉庫和大數據有其明確的需求和應用程序。

誤區7:大數據技術將消除數據集成的必要性

事實: 大數據技術使用“讀取模式”方法來處理信息。這使組織可以使用多個數據模型來讀取相同的源。人們普遍認為,它可以靈活地允許最終用戶確定如何按需解釋數據資產。此外,假設大數據提供針對各個用戶定制的數據訪問。

但是,實際上,用戶大多依賴于數據所在的“寫入模式”

  • 描述得當
  • 內容是規定的
  • 數據完整性及其與場景的關系

誤區8:大數據總是質量數據

事實: 大數據并不一定意味著它包含干凈和高質量的數據。相反,在大多數情況下,大數據包括數據質量錯誤。此外,為了從收集的大數據中利用更好和正確的見解,有必要對它們進行清理。因此,錯誤的假設是不需要數據清理,收集或分析大數據。

誤區9:大數據只用于分析

事實:您將從各種來源獲得至少12種不同的大數據定義。在某個地方,它被定義為5V,在某個地方作為海量數據集,在某個地方它與分析相交。因此,每個人都有不同的方法來定義。

此外,大數據是一種除了數據分析之外還具有許多功能的技術。因此,大數據事實在許多場景中,它用于分析復雜的用例模式,以獲得更好的洞察力來解決問題。

誤區10:Hadoop是內存技術的替代品

事實:Hadoop是非常受歡迎的大數據工具。內存技術與Hadoop底層架構集成,有助于實時集成來自各種源的大量數據。因此,內存是Hadoop的理想平臺及其技術基礎。

因此,Hadoop不是競爭技術或內存計算的替代品。

總結

如果沒有弄清大數據誤區對如今的企業阻礙是非常大的,它們可能導致糟糕的商業決策產生。如果不對這些神話中的大數據事實進行驗證,企業就會浪費寶貴的資源,否則這些資源可能會被用來提高企業的靈活性。

希望本次的大數據十大誤區的分享能對你有用,您知道關于大數據的其他誤區嗎?在評論部分寫下面的內容,我們將對此進行解釋。

責任編輯:未麗燕 來源: 今日頭條
相關推薦

2016-11-15 16:21:26

開發編程方法

2019-11-11 09:00:00

測試方案自動化測試軟件開發

2023-11-10 10:39:58

2017-02-09 10:31:17

大數據可視化誤區

2021-08-12 09:00:00

開發測試工具

2019-12-10 08:37:43

勒索病毒惡意軟件網絡安全

2020-12-20 18:10:32

物聯網傳感器物聯網傳感器

2010-01-12 10:44:32

Silverlight

2010-03-17 15:22:46

2016-11-23 15:03:42

編程技術IT

2025-01-10 12:00:00

JavaScript前端開發

2021-01-14 11:43:19

攻擊安全工具網絡罪犯

2010-11-19 14:52:56

2018-11-19 12:58:47

大數據技術Java

2013-06-18 09:44:59

IT安全IT安全誤區Gartner

2024-01-26 06:09:03

自動化測試技術

2009-11-16 16:07:06

2017-02-07 10:40:36

2021-12-14 16:55:18

人工智能機器學習算法

2017-09-11 14:26:02

大數據數據可視化數據分析圖
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 欧美在线观看一区二区 | 久久一级免费视频 | 美女二区| 国产精品一区一区三区 | 91久久国产精品 | 免费在线观看黄网站 | 黄色网址在线免费观看 | www成年人视频 | 成人av一区二区亚洲精 | 午夜天堂精品久久久久 | 在线观看的av | 欧美一级在线 | 日韩欧美国产一区二区 | 欧美激情国产日韩精品一区18 | 一区二区三区在线免费观看 | 日韩成人av在线 | 夜夜艹| 久久久久久久久久久久久9999 | 请别相信他免费喜剧电影在线观看 | 欧美成人h版在线观看 | 日韩一级黄色片 | 日本精品一区二区三区在线观看视频 | 国产黄色精品 | 亚洲品质自拍视频 | 久草在线青青草 | 草草草久久久 | 国产一区在线免费 | 国产精品美女久久久久久免费 | 欧美性久久久 | 日韩在线视频播放 | 中文字幕免费在线 | 成人精品免费视频 | 91精品久久久久久久久久 | 国产一区二区三区四区五区加勒比 | 宅女噜噜66国产精品观看免费 | 精品视频在线观看 | 日本久久久一区二区三区 | 午夜www | 日本人做爰大片免费观看一老师 | 亚洲高清视频一区二区 | 天天看天天干 |