成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

如何一次性訓練100,000+個Vision Transformers?

新聞 人工智能
我們發現了一項非常厲害的研究,號稱可一次性訓練10萬個ViT,論文也剛剛喜提ICCV accepted!

[[413052]]

本文轉自雷鋒網,如需轉載請至雷鋒網官網申請授權。

經過漫長的等待,ICCV 2021終于迎來放榜時刻!

ICCV官方在推特上公布了這一消息,并表示今年共有6236篇投稿,最終1617篇論文被接收,接收率為25.9%,相比于2017年(約29%),保持了和2019年相當的較低水平。

而投稿量則依舊逐年大幅增長,從2017年的2143篇,到2109年的4328篇,再到如今的6236篇,相比上一屆多了50%左右。

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

你看郵件的時候是這表情嗎?

[[413053]]

不得不說,官方皮起來也是接地氣、真扎心、沒誰了哈哈~

論文ID地址:https://docs.google.com/spreadsheets/u/1/d/e/2PACX-1vRfaTmsNweuaA0Gjyu58H_Cx56pGwFhcTYII0u1pg0U7MbhlgY0R6Y-BbK3xFhAiwGZ26u3TAtN5MnS/pubhtml

也就在今天,AI科技評論發現了一項非常厲害的研究,號稱可一次性訓練10萬個ViT,論文也剛剛喜提ICCV accepted!

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

近來,Vision Transformer (ViT) 模型在諸多視覺任務中展現出了強大的表達能力和潛力。

紐約州立大學石溪分校與微軟亞洲研究院的研究人員提出了一種新的網絡結構搜索方法AutoFormer,用來自動探索最優的ViT模型結構。

AutoFormer能一次性訓練大量的不同結構的ViT模型,并使得它們的性能達到收斂。

其搜索出來的結構對比手工設計的ViT模型有較明顯的性能提升。

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

方法亮點:

  • 同時訓練大量Vision Transformers模型,使其性能接近單獨訓練;

  • 簡單有效,能夠靈活應用于Vision Transformer的變種搜索;

  • 性能較ViT, DeiT等模型有較明顯提升。

論文地址:https://arxiv.org/abs/2107.00651

代碼地址:https://github.com/microsoft/AutoML/tree/main/AutoFormer

1. 引言

最近的研究發現,ViT能夠從圖像中學習強大的視覺表示,并已經在多個視覺任務(分類,檢測,分割等)上展現出了不俗的能力。

然而,Vision Transformer 模型的結構設計仍然比較困難。例如,如何選擇最佳的網絡深度、寬度和多頭注意力中的頭部數量?

作者的實驗發現這些因素都和模型的最終性能息息相關。然而,由于搜索空間非常龐大,我們很難人為地找到它們的最佳組合。   

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers? 

 

 

圖1: 不同搜索維度的變化會極大地影響模型的表現能力

本文的作者提出了一種專門針對Vision Transformer 結構的新的Neural Architecture Search (NAS) 方法 AutoFormer。AutoFormer大幅節省了人為設計結構的成本,并能夠自動地快速搜索不同計算限制條件下ViT模型各個維度的最佳組合,這使得不同部署場景下的模型設計變得更加簡單。

 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

 圖2: AutoFormer的結構示意圖,在每一個訓練迭代中,超網會動態變化并更新相應的部分權重

2. 方法

常見的One-shot NAS 方法[1, 2, 3]通常采取權重共享的方式來節省計算開銷,搜索空間被編碼進一個權重共享的超網 (supernet) 中,并運用超網權重作為搜索空間中結構權重的一個估計。其具體搜索過程可分為兩個步驟,第一步是更新超網的權重,如下公式所示。

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

第二步是利用訓練好的超網權重來對搜索空間中結構進行搜索。

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

在實驗的過程中,作者發現經典One-shot  NAS方法的權重共享方式很難被有效地運用到Vision Transformer的結構搜索中。這是因為之前的方法通常僅僅共享結構之間的權重,而解耦同一層中不同算子的權重。

如圖3所示,在Vision Transformer的搜索空間中,這種經典的策略會遇到收斂緩慢和性能較低的困難。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

圖3 權重糾纏和經典權重共享的訓練以及測試對比

受到OFA [4], BigNAS [5] 以及Slimmable networks [6, 7] 等工作的啟發,作者提出了一種新的權重共享方式——權重糾纏 (Weight Entanglement)。

如圖4所示,權重糾纏進一步共享不同結構之間的權重,使得同一層中不同算子之間能夠互相影響和更新,實驗證明權重糾纏對比經典的權重共享方式,擁有占用顯存少,超網收斂快和超網性能高的優勢。

同時,由于權重糾纏,不同算子能夠得到更加充分的訓練,這使得AutoFormer能夠一次性訓練大量的ViT模型,且使其接近收斂。(詳情見實驗部分) 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

圖4 權重糾纏和權重共享的對比示意圖

3. 實驗

作者設計了一個擁有超過1.7x10^17備選結構的巨大搜索空間,其搜索維度包括ViT模型中的五個主要的可變因素:寬度 (embedding dim)、Q-K-V 維度 (Q-K-V dimension)、頭部數量 (head number)、MLP 比率 (MLP ratio) 和網絡深度 (network depth),詳見表1。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

表1:AutoFormer的搜索空間

為了驗證方法的有效性,作者將AutoFormer搜索得到的結構和近期提出的ViT模型以及經典的CNN模型在ImageNet上進行了比較。

對于訓練過程,作者采取了DeiT [8]類似的數據增強方法,如 Mixup, Cutmix, RandAugment等, 超網的具體訓練參數如表2所示。所有模型都是在 16塊Tesla V100 GPU上進行訓練和測試的。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

表2 超網的訓練參數

如圖5 和表3所示,搜索得到的結構在ImageNet數據集上明顯優于已有的ViT模型。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

表3:各個模型在ImageNet 測試集上的結果

從表4中可以看出,在下游任務中,AutoFormer依然表現出色,利用僅僅25%的計算量就超越了已有的ViT和DeiT模型,展現了其強大的泛化性能力。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

表4:下游分類任務遷移學習的結果

同時,如圖5所示,利用權重糾纏,AutoFormer能夠同時使得成千上萬個Vision Transformers模型得到很好的訓練(藍色的點代表從搜索空間中選出的1000個較好的結構)。

不僅僅使得其在搜索后不再需要重新訓練(retraining)結構,節約了搜索時間,也使得其能在各種不同的計算資源限制下快速搜索最優結構。 

 

 

ICCV 2021放榜!發現一篇寶藏論文——如何一次性訓練100,000+個Vision Transformers?

 

 

圖5:左:AutoFormer能夠同時訓練大量結構,并使得其接近收斂。藍色的點代表從搜索空間中選出的1000個較好的結構。右:ImageNet上各模型對比

4. 結語

本文提出了一種新的專用于Vision Transformer結構搜索的One-shot NAS方法—— AutoFormer。AutoFormer 配備了新的權重共享機制,即權重糾纏 (Weight Engtanglement)。在這種機制下,搜索空間的網絡結構幾乎都能被充分訓練,省去了結構搜索后重新訓練(Retraining)的時間。大量實驗表明所提出的算法可以提高超網的排序能力并找到高性能的結構。在文章的最后,作者希望通過本文給手工ViT結構設計和NAS+Vision Transformer提供一些靈感。在未來工作,作者將嘗試進一步豐富搜索空間,以及給出權重糾纏的理論分析。

 

責任編輯:張燕妮 來源: 雷鋒網
相關推薦

2023-09-26 07:11:15

KubernetesJob節點

2024-04-26 10:12:38

混合訓練AI集群

2024-02-28 08:18:13

Java日志項目

2013-04-17 09:16:37

2014-08-04 14:38:25

LinuxToken

2011-04-18 13:36:42

2019-06-24 08:17:55

CPUFullGCJava

2021-08-12 09:48:21

Webpack Loa工具Webpack

2019-08-06 09:21:45

2020-05-28 08:29:54

目錄腳本測試

2012-09-18 15:04:31

Office 2013微軟

2009-12-25 14:46:53

Windows 7文件關聯

2014-03-06 15:16:18

安全管理linux安全

2010-11-24 16:32:50

2019-11-11 10:20:10

Linux重命名命令

2015-04-09 09:08:20

2024-07-17 11:27:26

2024-04-03 09:00:10

2012-02-01 16:48:54

后門Putty

2021-10-06 17:05:59

Python函數字典
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: av影音 | 国产精品一区二区无线 | 日韩伦理一区二区三区 | 免费av在线 | 国产亚洲精品久久午夜玫瑰园 | 国产精品久久久久久中文字 | 国产日韩欧美中文字幕 | 91国产在线播放 | 国产激情一区二区三区 | 97伦理电影网| 国产一区二区三区高清 | 亚洲精品欧美一区二区三区 | 欧美亚州 | 中文字幕高清在线 | 国产精品久久久久久妇女6080 | 九色 在线 | 亚洲综合色视频在线观看 | 国产小视频自拍 | 久久精品伊人 | 天天插天天操 | 欧美一区二区 | 免费一区二区三区 | 中文天堂网 | 成人免费日韩 | 久久久亚洲综合 | 伊人超碰| 天天色综网| 久久精品亚洲 | 中文字幕在线视频精品 | 超碰97干| 99福利 | 久久lu| 中文字幕亚洲区一区二 | 视频在线亚洲 | 国产精品久久久久久久模特 | 亚洲网站免费看 | 成人三级在线观看 | 国产免费视频在线 | 欧美日韩免费在线 | 91精品国产91久久久久久不卞 | 国产成人精品久久二区二区91 |