成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

生活中無處不在的數據分析

大數據 數據分析
我與一些身邊的同事朋友交流,有些做運營的朋友猜測數據分析師會慢慢變成數據運營,產品的朋友也越發覺得不需要數據分析師,自己就能做很多報表和分析,要分析師干什么?!

關于數據分析的問題

很多時候,會被一些剛剛入門或者入門兩三年的同學問:數據分析就是提數據嗎?為什么我感覺我像個工具人一樣天天寫SQL做報表呢?!

每到這個時候,我就想起來了我入行的那個夏天,每天樂此不疲的跑著SQL。好像自己那會兒沒有思考過這個問題,也沒有懷疑過說數據分析師是不是就只干提數據跑SQL的活兒。

當然,這里說到這個問題,我其實是非常贊同大家去思考并發出這個疑問的。我在這些年的工作中不斷的總結思考數據分析到底是做什么的,也非常的不贊同我們一直做這樣的活兒。SQL boy,表哥表姐,數據工具人,數據清道夫。

那反過來問,你如何才能不做這樣的活兒呢?我們不僅要提出問題,還需要養成思考問題答案的習慣。抱怨解決不了問題,不是嗎?

首先我認為,作為一個入門的同學,日常工作偏工具人,是可以接受的。但是這個可接受的節點,是我們還不了解業務的時候。當我們了解業務之后,就不該再花大量的時間去做這樣重復性高且價值不高的事情了。

這就要求我們,在做這種重復性的提數據的活兒的同時,不僅僅是為了滿足業務方需求,更重要的是,我們還需要構建自己對業務的認知。我們需要了解到,業務在做什么,業務要解決什么問題,業務和業務之間的聯系是什么。我們需要構建一個業務大圖,填上不同的業務板塊,填上業務板塊之前的聯系。當然,我們可以用紙畫出來,也可以在腦海中構建。

在我們了解業務,構建了業務大圖,對業務有了清晰認知之后,我們就算是完成了“始于業務的階段”。這時候,我們應該主動去用發現那些業務中可以做的各路分支,就如同一棵樹,有非常多的枝條,每一個業務上可以做的點,我們都可以看到,這時候,我們又需要結合業務的目標,以及我們的能力和興趣,去找到某個點,分析思考該如何做,這時,我們就到了“高于業務”的階段。最后,我們根據自己的分析思考,給出業務自己的落地建議,并將這個過程,通過一個通俗易懂的故事來告訴業務方去實施,我們才算是到了“反哺業務”的階段。

可以看到,數據分析每個人都會經歷三個階段,始于業務,高于業務,反哺業務。

  • 在始于業務的階段,我們確實是會做大量的提數據的工作,但是,要想從中解脫出來,我們還需要邁向下一個步驟。
  • 當然,邁向下一個步驟,我們可能還需要一點點經驗沉淀,以及優化思考的sense。當然這其中需要很多的項目經驗,還依賴于你對于自己經驗的整理,并將這些經驗抽象成可以復用的方法論。網上方法論一搜一大堆,但那些都屬于知識,只有經過長期的練習和不斷的實操,這些知識才能轉化為技能。
  • 但我也想要說明一點,我們的“高于業務”,并不是說我們通過描述統計告訴業務是什么。就如同去面試一樣,我們簡歷上就有自我介紹,為什么面試官還要我們自我介紹?!因為他想知道我們的觀點!

這也是業務方看到數據最想知道的,你從這個數據中得出了什么觀點。這個才是核心中的核心。這個觀點可以不對,但一定要有自己對于數據的觀點。因為隨著這個習慣的養成,以及與業務方的不斷磨合,我們才能提出對的觀點,才能養成良好的數據敏感度。

生活中的分析

很多時候,我們在JD中都能發現數據分析的影子,比如招一個產品經理崗位要求會數據分析,招一個運營同學也需要會數據分析。看起來數據分析越發的變成了一種基礎技能,而非一個具體的崗位。但是仍舊會有很多的公司在招數據分析師,增長分析師,戰略分析師。

我與一些身邊的同事朋友交流,有些做運營的朋友猜測數據分析師會慢慢變成數據運營,產品的朋友也越發覺得不需要數據分析師,自己就能做很多報表和分析,要分析師干什么?!

咱們先拋開這些觀點不看,不管以后有沒有數據分析這個崗位。我們先結合實際想想,在日常生活中,我們會遇到哪些問題可以利用數據分析的想法。

舉幾個小例子。

  • 為了“偷懶”,我們可以計算從出門到地鐵,需要多少分鐘,匹配一下,地鐵的間隔時長及到站時間點,就可以更精確的到達地鐵站,減少等待時間。
  • 為了“省錢”,我們會在點外賣時拼單,或者分成幾份點。因為這樣,我們可以更多的使用滿減紅包。
  • 為了“適配”,我們在找工作時,會考慮先要不加班,其次離家近,再其次有加班費之類的。

這些我們在生活中經常使用,不論是點外賣,找工作,還是趕地鐵,都會算一算,哪種對自己更有利。但是反過來思考一個問題:為什么我們會這么做?

因為很多時候,我們認為這樣能為我們生活帶來一定的方便,可以得到一些附加利益。計算地鐵間隔時間,我們可以在床上多睡幾分鐘;拼單點外賣,我們可以少花錢;找工作的適配,我們可以盡可能地找到“錢多事少離家近”的輕松活兒。而這些,都是實實在在能夠落地的,為我們生活帶來便利的小日常。

如果運用到實際業務中,我們站在用戶角度,如何讓用戶體驗到我們產品的價值呢?比如,為了幫用戶“偷懶”,我們可以簡化用戶注冊流程,做一個新手引導,降低用戶第一次使用產品時的成本。為了讓用戶“省錢”,我們可以給用戶推薦更適合他的內容,節省用戶尋找成本。為了讓用戶“適配”,我們可以將內容標簽化,供用戶選擇他更鐘意的內容。

這些都是我們可以從生活中遷移到業務中的小事。但正是這些小事,構成了我們的生活,也構成了用戶每一次使用產品的過程。精細化的理解和服務用戶,才是提供更好的用戶體驗的基石。

所以,隨著互聯網的發展,后續還會不會有數據分析這個崗位,我認為并不重要。重要的是,分析其實并不局限于某個崗位,局限于某個特定的工作,分析可以融入生活,融入業務中的方方面面,只要我們去不斷的拆分,站在用戶的角度,總能找到可以優化的方向。成就用戶,也成就我們自己。

關于分析的思考

上面我們說了,生活中有點點滴滴的分析例子,可以優化的點,業務同樣。但是,上面的這些例子,都是比較皮毛的。我們如果再深入的思考一下,在生活中這些點點滴滴里,我們如何做的更好,為自己帶來更多的便利呢?

延續上文的例子,如果我們想要在趕地鐵時更節省時間,或者避免由于其他因素導致的問題,我們是不是還可以計算自己的速度,以及根據出門時間與地鐵到達時間的間隔,判斷自己需要走路還是跑步。

如果我們想要更便宜的外賣,是不是可以貨比三家,查看同樣的食物在每一個店鋪中可能的便宜的金額,從而找到優惠最高的商家。

如果我們想要找到一個“錢多事少離家近”的工作,那么我們是不是可以先圈定一些公司范圍,在這些公司范圍中去篩選,我們可以去哪些公司面試,可以去哪些崗位工作,這樣是不是就比無頭蒼蠅似的、撒網似的投簡歷更高效?!

業務同樣,我們不僅要思考哪些點可以影響用戶,為用戶帶來便利,還需要將這個點拆分為具體可以度量的因素。

  • 比如上文說到的簡化注冊流程,那么該簡化注冊流程中的哪些步驟;
  • 建立新手引導,那么新手引導具體由哪些引導構成,告訴用戶的方法是什么;
  • 將內容標簽化,那標簽可以分為哪些類別,這些類別中由粗到細的粒度分別是什么,建立了標簽后,如何給用戶使用。

這些,就是拆分的過程,以及拆分后的實際落地。無論是對于業務同學,還是對于分析師來說,拆分和落地都十分重要。不要講那些空泛的統計數字,我們需要理解數字中代表的含義是什么,以及數字由哪些變量構成,這些變量如何映射到業務中。

只有這樣,拆分數字背后的業務,解讀數字的含義,我們才能發現數字中可以優化的方向,和落地的方向。

總結來說,通過解讀數字,我們可以得到怎樣的結論,可以表達出怎樣的觀點,才是數字的意義。因為數字本身是沒有意義的,只有落地到具體的業務場景,數字才具備了意義,業務才被數字所度量。

當然,這些拆分和落地,都需要不斷的學習,沉淀,復盤。學習可以讓我們了解具體的原理,讓我們在做業務時有頭緒;沉淀可以讓我們在下次遇到同樣的問題時,知道該怎么做;復盤可以讓我們不斷的總結自己的知識,優化提升抽象出自己的方法論,讓我們對問題有一個通用的解決方案。

前期,我們可以多去學習,嘗試使用一些成熟的方法論,比如5W2H,人貨場,AARRR之類的。先學會用這些方法論,因為方法論結合到業務,也需要一個磨合和理解的過程。

中期,我們可以去學習了解一些底層的數學理論,比如一些常用的樸素貝葉斯,全概率公式,馬爾可夫鏈,概率分布。因為5W2H,人貨場,AARRR,告訴我們的是如何拆分一個業務場景,而這些底層數學原理,告訴了我們如何量化業務,以及如何優化業務。

最后,我們結合在工作中的項目經驗,以及數學理論,拆分方法的落地過程,逐漸理解出自己對業務的理解,對分析的認知。這會兒,我們就可以算作有了一個通用的方法論雛形了。

后續,就是在不斷的落地的過程中,去優化完善自己的方法論,最終達到“一招鮮,吃遍天”的理想狀態(真的就是一個理想狀態)。

就我自己對分析的理解,身邊朋友的一句話我很贊同,“用數學邏輯串聯業務,講一個情景優化的故事”。我們不僅需要理解業務,還需要了解數學邏輯,還需要會講故事。三者缺一不可,當然,這些我們都可以慢慢積累沉淀,有了方向,我們也知道了該往哪個方向學習了,不是嗎?

在很多時候,我們不僅要知其然,還要知其所以然。套路你會用了,這OK,沒問題,但是閑下來,希望你也能去思考一下,背后的原理,為什么這么做,才是最重要的。

希望大家以后無論做業務還是做分析,都能持續學習,在這條路上深耕并有所成就。我一直相信一句話:當一個流程的轉化率沒有到100%的時候,就還有提升的空間。希望你在做任何的過程中,這句話也能伴你左右,只要沒到極致,就還能提升。

責任編輯:趙寧寧 來源: ITPUB
相關推薦

2014-07-07 11:28:36

2017-12-29 10:54:01

Python編程語言系統管理工具

2017-09-14 18:02:53

傷害學神挑戰

2022-09-16 10:44:17

物聯網通信網絡

2014-04-23 13:08:04

Dockerlinux

2013-11-11 15:04:52

2024-06-03 17:24:34

2021-02-18 16:41:26

大數據疫情物聯網

2011-07-05 10:41:17

webOS

2011-08-25 13:45:31

應用交付F5John McAdam

2013-04-07 13:03:34

ASP.NET

2019-04-30 14:05:20

思科ACI

2023-08-18 14:39:52

5G4G

2013-12-30 10:05:54

Linux操作系統

2021-10-29 15:30:37

SASE/網絡安全

2022-06-19 21:09:59

AI人工智能

2015-01-08 15:31:22

CES2015智能硬件HomeKit

2022-03-30 15:31:07

分布式數據云中數據倉庫云原生

2013-01-28 15:08:12

Windows Pho設計

2010-11-07 21:27:38

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 日韩精品成人av | 成人精品国产一区二区4080 | 欧美午夜一区 | 国产精品久久久久无码av | 丝袜美腿一区二区三区动态图 | 黄色大片在线播放 | 国产精品视频久久 | 久久国产精品一区二区三区 | 国产清纯白嫩初高生在线播放视频 | 日本在线网站 | 激情视频一区 | 国产在线精品一区 | 久久精品视频在线观看 | 精品久久久精品 | 国产成人免费视频网站高清观看视频 | 国产小视频在线 | 久久久久亚洲精品 | 亚洲欧美日韩一区二区 | 欧美区日韩区 | 亚洲欧洲综合av | 中文字幕综合 | 亚洲男人天堂av | 亚洲第一天堂 | 日韩av福利在线观看 | 国产成人在线播放 | 91影库| 欧美国产免费 | 久久久久久久久久久国产 | 久久免费精品视频 | 日韩成人在线免费观看 | 蜜桃在线视频 | 中文字幕精品一区二区三区精品 | 国产亚洲精品久久久久久豆腐 | 欧美八区 | 黄网站涩免费蜜桃网站 | 男人av网 | 日日操日日干 | 久久精品成人一区 | 涩爱av一区二区三区 | 日韩综合一区 | 久久久久成人精品亚洲国产 |