定時任務(wù)實現(xiàn)原理詳解
一、摘要
在很多業(yè)務(wù)的系統(tǒng)中,我們常常需要定時的執(zhí)行一些任務(wù),例如定時發(fā)短信、定時變更數(shù)據(jù)、定時發(fā)起促銷活動等等。
本文會重點分析下單機的定時任務(wù)實現(xiàn)原理以及優(yōu)缺點,分布式框架的實現(xiàn)原理會在后續(xù)文章中進行分析。
從單機角度,定時任務(wù)實現(xiàn)主要有以下 3 種方案:
- while + sleep 組合
- 最小堆實現(xiàn)
- 時間輪實現(xiàn)
二、while+sleep組合
while+sleep 方案,簡單的說,就是定義一個線程,然后 while 循環(huán),通過 sleep 延遲時間來達到周期性調(diào)度任務(wù)。
簡單示例如下:
public static void main(String[] args) {
final long timeInterval = 5000;
new Thread(new Runnable() {
@Override
public void run() {
while (true) {
System.out.println(Thread.currentThread().getName() + "每隔5秒執(zhí)行一次");
try {
Thread.sleep(timeInterval);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
}
實現(xiàn)上非常簡單,如果我們想在創(chuàng)建一個每隔3秒鐘執(zhí)行一次任務(wù),怎么辦呢?
同樣的,也可以在創(chuàng)建一個線程,然后間隔性的調(diào)度方法;但是如果創(chuàng)建了大量這種類型的線程,這個時候會發(fā)現(xiàn)大量的定時任務(wù)線程在調(diào)度切換時性能消耗會非常大,而且整體效率低!
面對這種在情況,大佬們也想到了,于是想出了用一個線程將所有的定時任務(wù)存起來,事先排好序,按照一定的規(guī)則來調(diào)度,這樣不就可以極大的減少每個線程的切換消耗嗎?
正因此,JDK 中的 Timer 定時器由此誕生了!
三、最小堆實現(xiàn)
所謂最小堆方案,正如我們上面所說的,每當(dāng)有新任務(wù)加入的時候,會把需要即將要執(zhí)行的任務(wù)排到前面,同時會有一個線程不斷的輪詢判斷,如果當(dāng)前某個任務(wù)已經(jīng)到達執(zhí)行時間點,就會立即執(zhí)行,具體實現(xiàn)代表就是 JDK 中的 Timer 定時器!
3.1、Timer
首先我們來一個簡單的 Timer 定時器例子
public static void main(String[] args) {
Timer timer = new Timer();
//每隔1秒調(diào)用一次
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("test1");
}
}, 1000, 1000);
//每隔3秒調(diào)用一次
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("test2");
}
}, 3000, 3000);
}
實現(xiàn)上,好像跟我們上面介紹的 while+sleep 方案差不多,同樣也是起一個TimerTask線程任務(wù),只不過共用一個Timer調(diào)度器。
下面我們一起來打開源碼看看里面到底有些啥!
- 進入Timer.schedule()方法
從方法上可以看出,這里主要做參數(shù)驗證,其中TimerTask是一個線程任務(wù),delay表示延遲多久執(zhí)行(單位毫秒),period表示多久執(zhí)行一次(單位毫秒)
public void schedule(TimerTask task, long delay, long period) {
if (delay < 0)
throw new IllegalArgumentException("Negative delay.");
if (period <= 0)
throw new IllegalArgumentException("Non-positive period.");
sched(task, System.currentTimeMillis()+delay, -period);
}
- 接著看sched()方法
這步操作中,可以很清晰的看到,在同步代碼塊里,會將task對象加入到queue
private void sched(TimerTask task, long time, long period) {
if (time < 0)
throw new IllegalArgumentException("Illegal execution time.");
// Constrain value of period sufficiently to prevent numeric
// overflow while still being effectively infinitely large.
if (Math.abs(period) > (Long.MAX_VALUE >> 1))
period >>= 1;
synchronized(queue) {
if (!thread.newTasksMayBeScheduled)
throw new IllegalStateException("Timer already cancelled.");
synchronized(task.lock) {
if (task.state != TimerTask.VIRGIN)
throw new IllegalStateException(
"Task already scheduled or cancelled");
task.nextExecutionTime = time;
task.period = period;
task.state = TimerTask.SCHEDULED;
}
queue.add(task);
if (queue.getMin() == task)
queue.notify();
}
}
- 我們繼續(xù)來看queue對象
任務(wù)會將入到TaskQueue隊列中,同時在Timer初始化階段會將TaskQueue作為參數(shù)傳入到TimerThread線程中,并且起到線程
public class Timer {
private final TaskQueue queue = new TaskQueue();
private final TimerThread thread = new TimerThread(queue);
public Timer() {
this("Timer-" + serialNumber());
}
public Timer(String name) {
thread.setName(name);
thread.start();
}
//...
}
- 而TaskQueue其實是一個最小堆的數(shù)據(jù)實體類,源碼如下
每當(dāng)有新元素加入的時候,會對原來的數(shù)組進行重排,會將即將要執(zhí)行的任務(wù)排在數(shù)組的前面
class TaskQueue {
private TimerTask[] queue = new TimerTask[128];
private int size = 0;
void add(TimerTask task) {
// Grow backing store if necessary
if (size + 1 == queue.length)
queue = Arrays.copyOf(queue, 2*queue.length);
queue[++size] = task;
fixUp(size);
}
private void fixUp(int k) {
while (k > 1) {
int j = k >> 1;
if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
break;
TimerTask tmp = queue[j];
queue[j] = queue[k];
queue[k] = tmp;
k = j;
}
}
//....
}
- 最后我們來看看TimerThread
TimerThread其實就是一個任務(wù)調(diào)度線程,首先從TaskQueue里面獲取排在最前面的任務(wù),然后判斷它是否到達任務(wù)執(zhí)行時間點,如果已到達,就會立刻執(zhí)行任務(wù)
class TimerThread extends Thread {
boolean newTasksMayBeScheduled = true;
private TaskQueue queue;
TimerThread(TaskQueue queue) {
this.queue = queue;
}
public void run() {
try {
mainLoop();
} finally {
// Someone killed this Thread, behave as if Timer cancelled
synchronized(queue) {
newTasksMayBeScheduled = false;
queue.clear(); // Eliminate obsolete references
}
}
}
/**
* The main timer loop. (See class comment.)
*/
private void mainLoop() {
while (true) {
try {
TimerTask task;
boolean taskFired;
synchronized(queue) {
// Wait for queue to become non-empty
while (queue.isEmpty() && newTasksMayBeScheduled)
queue.wait();
if (queue.isEmpty())
break; // Queue is empty and will forever remain; die
// Queue nonempty; look at first evt and do the right thing
long currentTime, executionTime;
task = queue.getMin();
synchronized(task.lock) {
if (task.state == TimerTask.CANCELLED) {
queue.removeMin();
continue; // No action required, poll queue again
}
currentTime = System.currentTimeMillis();
executionTime = task.nextExecutionTime;
if (taskFired = (executionTime<=currentTime)) {
if (task.period == 0) { // Non-repeating, remove
queue.removeMin();
task.state = TimerTask.EXECUTED;
} else { // Repeating task, reschedule
queue.rescheduleMin(
task.period<0 ? currentTime - task.period
: executionTime + task.period);
}
}
}
if (!taskFired) // Task hasn't yet fired; wait
queue.wait(executionTime - currentTime);
}
if (taskFired) // Task fired; run it, holding no locks
task.run();
} catch(InterruptedException e) {
}
}
}
}
總結(jié)這個利用最小堆實現(xiàn)的方案,相比 while + sleep 方案,多了一個線程來管理所有的任務(wù),優(yōu)點就是減少了線程之間的性能開銷,提升了執(zhí)行效率;但是同樣也帶來的了一些缺點,整體的新加任務(wù)寫入效率變成了 O(log(n))。
同時,細心的發(fā)現(xiàn),這個方案還有以下幾個缺點:
- 串行阻塞:調(diào)度線程只有一個,長任務(wù)會阻塞短任務(wù)的執(zhí)行,例如,A任務(wù)跑了一分鐘,B任務(wù)至少需要等1分鐘才能跑
- 容錯能力差:沒有異常處理能力,一旦一個任務(wù)執(zhí)行故障,后續(xù)任務(wù)都無法執(zhí)行
3.2、ScheduledThreadPoolExecutor
鑒于 Timer 的上述缺陷,從 Java 5 開始,推出了基于線程池設(shè)計的 ScheduledThreadPoolExecutor 。
圖片
其設(shè)計思想是,每一個被調(diào)度的任務(wù)都會由線程池來管理執(zhí)行,因此任務(wù)是并發(fā)執(zhí)行的,相互之間不會受到干擾。需要注意的是,只有當(dāng)任務(wù)的執(zhí)行時間到來時,ScheduledThreadPoolExecutor 才會真正啟動一個線程,其余時間 ScheduledThreadPoolExecutor 都是在輪詢?nèi)蝿?wù)的狀態(tài)。
簡單的使用示例:
public static void main(String[] args) {
ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(3);
//啟動1秒之后,每隔1秒執(zhí)行一次
executor.scheduleAtFixedRate((new Runnable() {
@Override
public void run() {
System.out.println("test3");
}
}),1,1, TimeUnit.SECONDS);
//啟動1秒之后,每隔3秒執(zhí)行一次
executor.scheduleAtFixedRate((new Runnable() {
@Override
public void run() {
System.out.println("test4");
}
}),1,3, TimeUnit.SECONDS);
}
同樣的,我們首先打開源碼,看看里面到底做了啥
- 進入scheduleAtFixedRate()方法
首先是校驗基本參數(shù),然后將任務(wù)作為封裝到ScheduledFutureTask線程中,ScheduledFutureTask繼承自RunnableScheduledFuture,并作為參數(shù)調(diào)用delayedExecute()方法進行預(yù)處理
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,
long period,
TimeUnit unit) {
if (command == null || unit == null)
throw new NullPointerException();
if (period <= 0)
throw new IllegalArgumentException();
ScheduledFutureTask<Void> sft =
new ScheduledFutureTask<Void>(command,
null,
triggerTime(initialDelay, unit),
unit.toNanos(period));
RunnableScheduledFuture<Void> t = decorateTask(command, sft);
sft.outerTask = t;
delayedExecute(t);
return t;
}
- 繼續(xù)看delayedExecute()方法
可以很清晰的看到,當(dāng)線程池沒有關(guān)閉的時候,會通過super.getQueue().add(task)操作,將任務(wù)加入到隊列,同時調(diào)用ensurePrestart()方法做預(yù)處理
private void delayedExecute(RunnableScheduledFuture<?> task) {
if (isShutdown())
reject(task);
else {
super.getQueue().add(task);
if (isShutdown() &&
!canRunInCurrentRunState(task.isPeriodic()) &&
remove(task))
task.cancel(false);
else
//預(yù)處理
ensurePrestart();
}
}
其中super.getQueue()得到的是一個自定義的new DelayedWorkQueue()阻塞隊列,數(shù)據(jù)存儲方面也是一個最小堆結(jié)構(gòu)的隊列,這一點在初始化new ScheduledThreadPoolExecutor()的時候,可以看出!
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
打開源碼可以看到,DelayedWorkQueue其實是ScheduledThreadPoolExecutor中的一個靜態(tài)內(nèi)部類,在添加的時候,會將任務(wù)加入到RunnableScheduledFuture數(shù)組中,同時線程池中的Woker線程會通過調(diào)用任務(wù)隊列中的take()方法獲取對應(yīng)的ScheduledFutureTask線程任務(wù),接著執(zhí)行對應(yīng)的任務(wù)線程
static class DelayedWorkQueue extends AbstractQueue<Runnable>
implements BlockingQueue<Runnable> {
private static final int INITIAL_CAPACITY = 16;
private RunnableScheduledFuture<?>[] queue =
new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
private final ReentrantLock lock = new ReentrantLock();
private int size = 0;
//....
public boolean add(Runnable e) {
return offer(e);
}
public boolean offer(Runnable x) {
if (x == null)
throw new NullPointerException();
RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = size;
if (i >= queue.length)
grow();
size = i + 1;
if (i == 0) {
queue[0] = e;
setIndex(e, 0);
} else {
siftUp(i, e);
}
if (queue[0] == e) {
leader = null;
available.signal();
}
} finally {
lock.unlock();
}
return true;
}
public RunnableScheduledFuture<?> take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
RunnableScheduledFuture<?> first = queue[0];
if (first == null)
available.await();
else {
long delay = first.getDelay(NANOSECONDS);
if (delay <= 0)
return finishPoll(first);
first = null; // don't retain ref while waiting
if (leader != null)
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && queue[0] != null)
available.signal();
lock.unlock();
}
}
}
- 回到我們最開始說到的ScheduledFutureTask任務(wù)線程類,最終執(zhí)行任務(wù)的其實就是它
ScheduledFutureTask任務(wù)線程,才是真正執(zhí)行任務(wù)的線程類,只是繞了一圈,做了很多包裝,run()方法就是真正執(zhí)行定時任務(wù)的方法。
private class ScheduledFutureTask<V>
extends FutureTask<V> implements RunnableScheduledFuture<V> {
/** Sequence number to break ties FIFO */
private final long sequenceNumber;
/** The time the task is enabled to execute in nanoTime units */
private long time;
/**
* Period in nanoseconds for repeating tasks. A positive
* value indicates fixed-rate execution. A negative value
* indicates fixed-delay execution. A value of 0 indicates a
* non-repeating task.
*/
private final long period;
/** The actual task to be re-enqueued by reExecutePeriodic */
RunnableScheduledFuture<V> outerTask = this;
/**
* Overrides FutureTask version so as to reset/requeue if periodic.
*/
public void run() {
boolean periodic = isPeriodic();
if (!canRunInCurrentRunState(periodic))
cancel(false);
else if (!periodic)
ScheduledFutureTask.super.run();
else if (ScheduledFutureTask.super.runAndReset()) {
setNextRunTime();
reExecutePeriodic(outerTask);
}
}
//...
}
3.3、小結(jié)
ScheduledExecutorService 相比 Timer 定時器,完美的解決上面說到的 Timer 存在的兩個缺點!
在單體應(yīng)用里面,使用 ScheduledExecutorService 可以解決大部分需要使用定時任務(wù)的業(yè)務(wù)需求!
但是這是否意味著它是最佳的解決方案呢?
我們發(fā)現(xiàn)線程池中 ScheduledExecutorService 的排序容器跟 Timer 一樣,都是采用最小堆的存儲結(jié)構(gòu),新任務(wù)加入排序效率是O(log(n)),執(zhí)行取任務(wù)是O(1)。
這里的寫入排序效率其實是有空間可提升的,有可能優(yōu)化到O(1)的時間復(fù)雜度,也就是我們下面要介紹的時間輪實現(xiàn)!
四、時間輪實現(xiàn)
所謂時間輪(RingBuffer)實現(xiàn),從數(shù)據(jù)結(jié)構(gòu)上看,簡單的說就是循環(huán)隊列,從名稱上看可能感覺很抽象。
它其實就是一個環(huán)形的數(shù)組,如圖所示,假設(shè)我們創(chuàng)建了一個長度為 8 的時間輪。
插入、取值流程:
1.當(dāng)我們需要新建一個 1s 延時任務(wù)的時候,則只需要將它放到下標為 1 的那個槽中,2、3、...、7也同樣如此。
2.而如果是新建一個 10s 的延時任務(wù),則需要將它放到下標為 2 的槽中,但同時需要記錄它所對應(yīng)的圈數(shù),也就是 1 圈,不然就和 2 秒的延時消息重復(fù)了
3.當(dāng)創(chuàng)建一個 21s 的延時任務(wù)時,它所在的位置就在下標為 5 的槽中,同樣的需要為他加上圈數(shù)為 2,依次類推...
因此,總結(jié)起來有兩個核心的變量:
- 數(shù)組下標:表示某個任務(wù)延遲時間,從數(shù)據(jù)操作上對執(zhí)行時間點進行取余
- 圈數(shù):表示需要循環(huán)圈數(shù)
通過這張圖可以更直觀的理解!
當(dāng)我們需要取出延時任務(wù)時,只需要每秒往下移動這個指針,然后取出該位置的所有任務(wù)即可,取任務(wù)的時間消耗為O(1)。
當(dāng)我們需要插入任務(wù)式,也只需要計算出對應(yīng)的下表和圈數(shù),即可將任務(wù)插入到對應(yīng)的數(shù)組位置中,插入任務(wù)的時間消耗為O(1)。
如果時間輪的槽比較少,會導(dǎo)致某一個槽上的任務(wù)非常多,那么效率也比較低,這就和 HashMap 的 hash 沖突是一樣的,因此在設(shè)計槽的時候不能太大也不能太小。
4.1、代碼實現(xiàn)
- 首先創(chuàng)建一個RingBufferWheel時間輪定時任務(wù)管理器
public class RingBufferWheel {
private Logger logger = LoggerFactory.getLogger(RingBufferWheel.class);
/**
* default ring buffer size
*/
private static final int STATIC_RING_SIZE = 64;
private Object[] ringBuffer;
private int bufferSize;
/**
* business thread pool
*/
private ExecutorService executorService;
private volatile int size = 0;
/***
* task stop sign
*/
private volatile boolean stop = false;
/**
* task start sign
*/
private volatile AtomicBoolean start = new AtomicBoolean(false);
/**
* total tick times
*/
private AtomicInteger tick = new AtomicInteger();
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
private AtomicInteger taskId = new AtomicInteger();
private Map<Integer, Task> taskMap = new ConcurrentHashMap<>(16);
/**
* Create a new delay task ring buffer by default size
*
* @param executorService the business thread pool
*/
public RingBufferWheel(ExecutorService executorService) {
this.executorService = executorService;
this.bufferSize = STATIC_RING_SIZE;
this.ringBuffer = new Object[bufferSize];
}
/**
* Create a new delay task ring buffer by custom buffer size
*
* @param executorService the business thread pool
* @param bufferSize custom buffer size
*/
public RingBufferWheel(ExecutorService executorService, int bufferSize) {
this(executorService);
if (!powerOf2(bufferSize)) {
throw new RuntimeException("bufferSize=[" + bufferSize + "] must be a power of 2");
}
this.bufferSize = bufferSize;
this.ringBuffer = new Object[bufferSize];
}
/**
* Add a task into the ring buffer(thread safe)
*
* @param task business task extends {@link Task}
*/
public int addTask(Task task) {
int key = task.getKey();
int id;
try {
lock.lock();
int index = mod(key, bufferSize);
task.setIndex(index);
Set<Task> tasks = get(index);
int cycleNum = cycleNum(key, bufferSize);
if (tasks != null) {
task.setCycleNum(cycleNum);
tasks.add(task);
} else {
task.setIndex(index);
task.setCycleNum(cycleNum);
Set<Task> sets = new HashSet<>();
sets.add(task);
put(key, sets);
}
id = taskId.incrementAndGet();
task.setTaskId(id);
taskMap.put(id, task);
size++;
} finally {
lock.unlock();
}
start();
return id;
}
/**
* Cancel task by taskId
* @param id unique id through {@link #addTask(Task)}
* @return
*/
public boolean cancel(int id) {
boolean flag = false;
Set<Task> tempTask = new HashSet<>();
try {
lock.lock();
Task task = taskMap.get(id);
if (task == null) {
return false;
}
Set<Task> tasks = get(task.getIndex());
for (Task tk : tasks) {
if (tk.getKey() == task.getKey() && tk.getCycleNum() == task.getCycleNum()) {
size--;
flag = true;
taskMap.remove(id);
} else {
tempTask.add(tk);
}
}
//update origin data
ringBuffer[task.getIndex()] = tempTask;
} finally {
lock.unlock();
}
return flag;
}
/**
* Thread safe
*
* @return the size of ring buffer
*/
public int taskSize() {
return size;
}
/**
* Same with method {@link #taskSize}
* @return
*/
public int taskMapSize(){
return taskMap.size();
}
/**
* Start background thread to consumer wheel timer, it will always run until you call method {@link #stop}
*/
public void start() {
if (!start.get()) {
if (start.compareAndSet(start.get(), true)) {
logger.info("Delay task is starting");
Thread job = new Thread(new TriggerJob());
job.setName("consumer RingBuffer thread");
job.start();
start.set(true);
}
}
}
/**
* Stop consumer ring buffer thread
*
* @param force True will force close consumer thread and discard all pending tasks
* otherwise the consumer thread waits for all tasks to completes before closing.
*/
public void stop(boolean force) {
if (force) {
logger.info("Delay task is forced stop");
stop = true;
executorService.shutdownNow();
} else {
logger.info("Delay task is stopping");
if (taskSize() > 0) {
try {
lock.lock();
condition.await();
stop = true;
} catch (InterruptedException e) {
logger.error("InterruptedException", e);
} finally {
lock.unlock();
}
}
executorService.shutdown();
}
}
private Set<Task> get(int index) {
return (Set<Task>) ringBuffer[index];
}
private void put(int key, Set<Task> tasks) {
int index = mod(key, bufferSize);
ringBuffer[index] = tasks;
}
/**
* Remove and get task list.
* @param key
* @return task list
*/
private Set<Task> remove(int key) {
Set<Task> tempTask = new HashSet<>();
Set<Task> result = new HashSet<>();
Set<Task> tasks = (Set<Task>) ringBuffer[key];
if (tasks == null) {
return result;
}
for (Task task : tasks) {
if (task.getCycleNum() == 0) {
result.add(task);
size2Notify();
} else {
// decrement 1 cycle number and update origin data
task.setCycleNum(task.getCycleNum() - 1);
tempTask.add(task);
}
// remove task, and free the memory.
taskMap.remove(task.getTaskId());
}
//update origin data
ringBuffer[key] = tempTask;
return result;
}
private void size2Notify() {
try {
lock.lock();
size--;
if (size == 0) {
condition.signal();
}
} finally {
lock.unlock();
}
}
private boolean powerOf2(int target) {
if (target < 0) {
return false;
}
int value = target & (target - 1);
if (value != 0) {
return false;
}
return true;
}
private int mod(int target, int mod) {
// equals target % mod
target = target + tick.get();
return target & (mod - 1);
}
private int cycleNum(int target, int mod) {
//equals target/mod
return target >> Integer.bitCount(mod - 1);
}
/**
* An abstract class used to implement business.
*/
public abstract static class Task extends Thread {
private int index;
private int cycleNum;
private int key;
/**
* The unique ID of the task
*/
private int taskId ;
@Override
public void run() {
}
public int getKey() {
return key;
}
/**
*
* @param key Delay time(seconds)
*/
public void setKey(int key) {
this.key = key;
}
public int getCycleNum() {
return cycleNum;
}
private void setCycleNum(int cycleNum) {
this.cycleNum = cycleNum;
}
public int getIndex() {
return index;
}
private void setIndex(int index) {
this.index = index;
}
public int getTaskId() {
return taskId;
}
public void setTaskId(int taskId) {
this.taskId = taskId;
}
}
private class TriggerJob implements Runnable {
@Override
public void run() {
int index = 0;
while (!stop) {
try {
Set<Task> tasks = remove(index);
for (Task task : tasks) {
executorService.submit(task);
}
if (++index > bufferSize - 1) {
index = 0;
}
//Total tick number of records
tick.incrementAndGet();
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
logger.error("Exception", e);
}
}
logger.info("Delay task has stopped");
}
}
}
- 接著,編寫一個客戶端,測試客戶端
public static void main(String[] args) {
RingBufferWheel ringBufferWheel = new RingBufferWheel( Executors.newFixedThreadPool(2));
for (int i = 0; i < 3; i++) {
RingBufferWheel.Task job = new Job();
job.setKey(i);
ringBufferWheel.addTask(job);
}
}
public static class Job extends RingBufferWheel.Task{
@Override
public void run() {
System.out.println("test5");
}
}
運行結(jié)果:
test5
test5
test5
如果要周期性執(zhí)行任務(wù),可以在任務(wù)執(zhí)行完成之后,再重新加入到時間輪中。
詳細源碼分析地址:點擊這里獲取
4.2、應(yīng)用
時間輪的應(yīng)用還是非常廣的,例如在 Disruptor 項目中就運用到了 RingBuffer,還有Netty中的HashedWheelTimer工具原理也差不多等等,有興趣的同學(xué),可以閱讀一下官方對應(yīng)的源碼!
五、小結(jié)
本文主要圍繞單體應(yīng)用中的定時任務(wù)原理進行分析,可能也有理解不對的地方,歡迎評論區(qū)留言!
六、參考
1、https://www.jianshu.com/p/84d9db1b1def
2、https://crossoverjie.top/2019/09/27/algorithm