Jeff Markham:Hadoop YARN的高可用性
原創【51CTO獨家特稿】在2013 China Hadoop Summit峰會上,來自Hortonworks的CTO,Jeff先生為我們分享了YARN在大數據方面的應用。
Jeff首先談到了YARN對比MESOS的一些優勢。比如架構更加簡單,用戶可以不用過于復雜的設計工程。在可擴展性方面,YARN也有自己的優勢。Yarn 框架相對于老的 MapReduce 框架什么優勢呢?我們可以看到:
這個設計大大減小了 JobTracker(也就是現在的 ResourceManager)的資源消耗,并且讓監測每一個 Job 子任務 (tasks) 狀態的程序分布式化了,更安全、更優美。在新的 Yarn 中,ApplicationMaster 是一個可變更的部分,用戶可以對不同的編程模型寫自己的 AppMst,讓更多類型的編程模型能夠跑在 Hadoop 集群中,可以參考 hadoop Yarn 官方配置模板中的 mapred-site.xml 配置。
對于資源的表示以內存為單位 ( 在目前版本的 Yarn 中,沒有考慮 cpu 的占用 ),比之前以剩余 slot 數目更合理。 老的框架中,JobTracker 一個很大的負擔就是監控 job 下的 tasks 的運行狀況,現在,這個部分就扔給 ApplicationMaster 做了,而 ResourceManager 中有一個模塊叫做 ApplicationsMasters( 注意不是 ApplicationMaster),它是監測 ApplicationMaster 的運行狀況,如果出問題,會將其在其他機器上重啟。
Container 是 Yarn 為了將來作資源隔離而提出的一個框架。這一點應該借鑒了 Mesos 的工作,目前是一個框架,僅僅提供 java 虛擬機內存的隔離 ,hadoop 團隊的設計思路應該后續能支持更多的資源調度和控制 , 既然資源表示成內存量,那就沒有了之前的 map slot/reduce slot 分開造成集群資源閑置的尷尬情況。