成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

你真的懂TensorFlow嗎?Tensor是神馬?為什么還會Flow?

開發 開發工具
也許你已經下載了TensorFlow,而且準備開始著手研究深度學習。那么張量(Tensor)是什么,而且為什么會流動(Flow)?下面,我們一起來看。

也許你已經下載了TensorFlow,而且準備開始著手研究深度學習。但是你會疑惑:TensorFlow里面的Tensor,也就是“張量”,到底是個什么鬼?也許你查閱了維基百科,而且現在變得更加困惑。也許你在NASA教程中看到它,仍然不知道它在說些什么?問題在于大多數講述張量的指南,都假設你已經掌握他們描述數學的所有術語。

別擔心!

[[192552]]
編譯 | 邵胖胖,江凡,笪潔瓊,Aileen

我像小孩子一樣討厭數學,所以如果我能明白,你也可以!我們只需要用簡單的措辭來解釋這一切。所以,張量(Tensor)是什么,而且為什么會流動(Flow)?

讓我們先來看看tensor(張量)是什么?

張量=容器

張量是現代機器學習的基礎。它的核心是一個數據容器,多數情況下,它包含數字,有時候它也包含字符串,但這種情況比較少。因此把它想象成一個數字的水桶。

張量有多種形式,首先讓我們來看最基本的形式,你會在深度學習中偶然遇到,它們在0維到5維之間。我們可以把張量的各種類型看作這樣(對被題目中的貓咪吸引進來小伙伴說一句,不要急!貓咪在后面會出現哦!):

張量最基本的形式

 0維張量/標量

裝在張量/容器水桶中的每個數字稱為“標量”。

標量是一個數字。

你會問為什么不干脆叫它們一個數字呢?

我不知道,也許數學家只是喜歡聽起來酷?標量聽起來確實比數字酷。

實際上,你可以使用一個數字的張量,我們稱為0維張量,也就是一個只有0維的張量。它僅僅只是帶有一個數字的水桶。想象水桶里只有一滴水,那就是一個0維張量。

本教程中,我將使用Python,Keras,TensorFlow和Python庫Numpy。在Python中,張量通常存儲在Nunpy數組,Numpy是在大部分的AI框架中,一個使用頻率非常高的用于科學計算的數據包。

在Python中,張量通常存儲在Nunpy數組,Numpy是在大部分的AI框架中

你將在Kaggle(數據科學競賽網站)上經常看到Jupyter Notebooks(安裝見文末閱讀鏈接,“數學爛也要學AI:帶你造一個經濟試用版AI終極必殺器”)關于把數據轉變成Numpy數組。Jupyter notebooks本質上是由工作代碼標記嵌入。可以認為它把解釋和程序融為一體。

我們為什么想把數據轉換為Numpy數組?

很簡單。因為我們需要把所有的輸入數據,如字符串文本,圖像,股票價格,或者視頻,轉變為一個統一得標準,以便能夠容易的處理。

這樣我們把數據轉變成數字的水桶,我們就能用TensorFlow處理。

它僅僅是組織數據成為可用的格式。在網頁程序中,你也許通過XML表示,所以你可以定義它們的特征并快速操作。同樣,在深度學習中,我們使用張量水桶作為基本的樂高積木。

1維張量/向量

如果你是名程序員,那么你已經了解,類似于1維張量:數組。

每個編程語言都有數組,它只是單列或者單行的一組數據塊。在深度學習中稱為1維張量。張量是根據一共具有多少坐標軸來定義。1維張量只有一個坐標軸。

1維張量稱為“向量”。

我們可以把向量視為一個單列或者單行的數字。

把向量視為一個單列或者單行的數字

如果想在Numpy得出此結果,按照如下方法:

我們可以通過NumPy’s ndim函數,查看張量具有多個坐標軸。我們可以嘗試1維張量。

NumPy’s ndim函數

2維張量

你可能已經知道了另一種形式的張量,矩陣——2維張量稱為矩陣

2維張量稱為矩陣

不,這不是基努·里維斯(Keanu Reeves)的電影《黑客帝國》,想象一個excel表格。

我們可以把它看作為一個帶有行和列的數字網格。

這個行和列表示兩個坐標軸,一個矩陣是二維張量,意思是有兩維,也就是有兩個坐標軸的張量。

在Numpy中,我們可以如下表示:

  1. x = np.array([[5,10,15,30,25], 
  2.  
  3.               [20,30,65,70,90], 
  4.  
  5.               [7,80,95,20,30]]) 

我們可以把人的特征存儲在一個二維張量。有一個典型的例子是郵件列表。

比如我們有10000人,我們有每個人的如下特性和特征:

  • First Name(名)
  • Last Name(姓)
  • Street Address(街道地址)
  • City(城市)
  • State(州/省)
  • Country(國家)
  • Zip(郵政編碼)

這意味著我們有10000人的七個特征。

張量具有“形狀”,它的形狀是一個水桶,即裝著我們的數據也定義了張量的最大尺寸。我們可以把所有人的數據放進二維張量中,它是(10000,7)。

你也許想說它有10000列,7行。

不。

張量能夠被轉換和操作,從而使列變為行或者行變為列。

3維張量

這時張量真正開始變得有用,我們經常需要把一系列的二維張量存儲在水桶中,這就形成了3維張量。

在NumPy中,我們可以表示如下:

  1. x = np.array([[[5,10,15,30,25], 
  2.                [20,30,65,70,90], 
  3.                [7,80,95,20,30]] 
  4.                [[3,0,5,0,45], 
  5.                [12,-2,6,7,90], 
  6.                [18,-9,95,120,30]] 
  7.                [[17,13,25,30,15], 
  8.                [23,36,9,7,80], 
  9.                [1,-7,-5,22,3]]]) 

你已經猜到,一個三維張量有三個坐標軸,可以這樣看到:

  1. x.ndim 

輸出為:

讓我們再看一下上面的郵件列表,現在我們有10個郵件列表,我們將存儲2維張量在另一個水桶里,創建一個3維張量,它的形狀如下:

  1. (number_of_mailing_lists, number_of_people, number_of_characteristics_per_person) 
  2.  
  3. (10,10000,7) 

你也許已經猜到它,但是一個3維張量是一個數字構成的立方體。

我們可以繼續堆疊立方體,創建一個越來越大的張量,來編輯不同類型的數據,也就是4維張量,5維張量等等,直到N維張量。N是數學家定義的未知數,它是一直持續到無窮集合里的附加單位。它可以是5,10或者無窮。

實際上,3維張量最好視為一層網格,看起來有點像下圖:

3維張量最好視為一層網格

存儲在張量數據中的公式

這里有一些存儲在各種類型張量的公用數據集類型:

  • 3維=時間序列
  • 4維=圖像
  • 5維=視頻

幾乎所有的這些張量的共同之處是樣本量。樣本量是集合中元素的數量,它可以是一些圖像,一些視頻,一些文件或者一些推特。

通常,真實的數據至少是一個數據量。

把形狀里不同維數看作字段。我們找到一個字段的最小值來描述數據。

因此,即使4維張量通常存儲圖像,那是因為樣本量占據張量的第4個字段。

例如,一個圖像可以用三個字段表示:

  1. (width, height, color_depth) = 3D 

但是,在機器學習工作中,我們經常要處理不止一張圖片或一篇文檔——我們要處理一個集合。我們可能有10,000張郁金香的圖片,這意味著,我們將用到4D張量,就像這樣:

4D張量

  1. (sample_size, width, height, color_depth) = 4D 

我們來看看一些多維張量存儲模型的例子:

時間序列數據

用3D張量來模擬時間序列會非常有效!

醫學掃描——我們可以將腦電波(EEG)信號編碼成3D張量,因為它可以由這三個參數來描述:

  1. (time, frequency, channel) 

這種轉化看起來就像這樣:

如果我們有多個病人的腦電波掃描圖,那就形成了一個4D張量:

  1. (sample_size, time, frequency, channel)  
  2. Stock Prices 

在交易中,股票每分鐘有最高、最低和最終價格。如下圖的蠟燭圖所示:

紐交所開市時間從早上9:30到下午4:00,即6.5個小時,總共有6.5 x 60 = 390分鐘。如此,我們可以將每分鐘內最高、最低和最終的股價存入一個2D張量(390,3)。如果我們追蹤一周(五天)的交易,我們將得到這么一個3D張量:

  1. (week_of_data, minutes, high_low_price) 

即:

  1. (5,390,3) 

同理,如果我們觀測10只不同的股票,觀測一周,我們將得到一個4D張量

  1. (10,5,390,3) 

假設我們在觀測一個由25只股票組成的共同基金,其中的每只股票由我們的4D張量來表示。那么,這個共同基金可以有一個5D張量來表示:

  1. (25,10,5,390,3) 

文本數據

我們也可以用3D張量來存儲文本數據,我們來看看推特的例子。

首先,推特有140個字的限制。其次,推特使用UTF-8編碼標準,這種編碼標準能表示百萬種字符,但實際上我們只對前128個字符感興趣,因為他們與ASCII碼相同。所以,一篇推特文可以包裝成一個2D向量:

  1. (140,128) 

如果我們下載了一百萬篇川普哥的推文(印象中他一周就能推這么多),我們就會用3D張量來存:

  1. (number_of_tweets_captured, tweet, character) 

這意味著,我們的川普推文集合看起來會是這樣:

  1. (1000000,140,128) 

圖片

4D張量很適合用來存諸如JPEG這樣的圖片文件。之前我們提到過,一張圖片有三個參數:高度、寬度和顏色深度。一張圖片是3D張量,一個圖片集則是4D,第四維是樣本大小。

著名的MNIST數據集是一個手寫的數字序列,作為一個圖像識別問題,曾在幾十年間困擾許多數據科學家。現在,計算機能以99%或更高的準確率解決這個問題。即便如此,這個數據集仍可以當做一個優秀的校驗基準,用來測試新的機器學習算法應用,或是用來自己做實驗。

Keras 甚至能用以下語句幫助我們自動導入MNIST數據集:

  1. from keras.datasets import mnist 
  2. (train_images, train_labels), (test_images, test_labels) = mnist.load_data() 

這個數據集被分成兩個部分:訓練集和測試集。數據集中的每張圖片都有一個標簽。這個標簽寫有正確的讀數,例如3,7或是9,這些標簽都是通過人工判斷并填寫的。

訓練集是用來訓練神經網絡學習算法,測試集則用來校驗這個學習算法。

MNIST圖片是黑白的,這意味著它們可以用2D張量來編碼,但我們習慣于將所有的圖片用3D張量來編碼,多出來的第三個維度代表了圖片的顏色深度。

MNIST數據集有60,000張圖片,它們都是28 x 28像素,它們的顏色深度為1,即只有灰度。

TensorFlow這樣存儲圖片數據:

  1. (sample_size, height, width, color_depth). 

于是我們可以認為,MNIST數據集的4D張量是這樣的:

  1. (60000,28,28,1) 

彩色圖片

彩色圖片有不同的顏色深度,這取決于它們的色彩(注:跟分辨率沒有關系)編碼。一張典型的JPG圖片使用RGB編碼,于是它的顏色深度為3,分別代表紅、綠、藍。

這是一張我美麗無邊的貓咪(Dove)的照片,750 x750像素,這意味著我們能用一個3D張量來表示它:

  1. (750,750,3) 

My beautiful cat Dove (750 x 750 pixels)

這樣,我可愛的Dove將被簡化為一串冷冰冰的數字,就好像它變形或流動起來了。

然后,如果我們有一大堆不同類型的貓咪圖片(雖然都沒有Dove美),也許是100,000張吧,不是DOVE它的,750 x750像素的。我們可以在Keras中用4D張量來這樣定義:

  1. (10000,750,750,3) 

5D張量

5D張量可以用來存儲視頻數據。TensorFlow中,視頻數據將如此編碼:

  1. (sample_size, frames, width, height, color_depth) 

如果我們考察一段5分鐘(300秒),1080pHD(1920 x 1080像素),每秒15幀(總共4500幀),顏色深度為3的視頻,我們可以用4D張量來存儲它:

  1. (4500,1920,1080,3) 

當我們有多段視頻的時候,張量中的第五個維度將被使用。如果我們有10段這樣的視頻,我們將得到一個5D張量:

  1. (10,4500,1920,1080,3) 

實際上這個例子太瘋狂了!

這個張量的大是很荒謬的,超過1TB。我們姑且考慮下這個例子以便說明一個問題:在現實世界中,我們有時需要盡可能的縮小樣本數據以方便的進行處理計算,除非你有無盡的時間。

這個5D張量中值的數量為:

10 x 4500 x 1920 x 1080 x 3 = 279,936,000,000

在Keras中,我們可以用一個叫dype的數據類型來存儲32bits或64bits的浮點數

我們5D張量中的每一個值都將用32 bit來存儲,現在,我們以TB為單位來進行轉換:

279,936,000,000 x 32 = 8,957,952,000,000

這還只是保守估計,或許用32bit來儲存根本就不夠(誰來計算一下如果用64bit來存儲會怎樣),所以,減小你的樣本吧朋友。

事實上,我舉出這最后一個瘋狂的例子是有特殊目的的。我們剛學過數據預處理和數據壓縮。你不能什么工作也不做就把大堆數據扔向你的AI模型。你必須清洗和縮減那些數據讓后續工作更簡潔更高效。

降低分辨率,去掉不必要的數據(也就是去重處理),這大大縮減了幀數,等等這也是數據科學家的工作。如果你不能很好地對數據做這些預處理,那么你幾乎做不了任何有意義的事。

結論

好了,現在你已經對張量和用張量如何對接不同類型數據有了更好的了解。

原文:https://hackernoon.com/learning-ai-if-you-suck-at-math-p4-tensors-illustrated-with-cats-27f0002c9b32

【本文是51CTO專欄機構大數據文摘的原創譯文,微信公眾號“大數據文摘( id: BigDataDigest)”】

      大數據文摘二維碼 

戳這里,看該作者更多好文

責任編輯:趙寧寧 來源: 51CTO專欄
相關推薦

2019-05-13 14:17:06

抓包Web安全漏洞

2022-09-28 18:16:34

JavaJDK

2019-10-18 09:50:47

網絡分層模型網絡協議

2019-09-15 10:38:28

網絡分層模型

2023-11-29 08:03:05

2020-09-03 06:42:12

線程安全CPU

2021-08-30 15:41:13

Kafka運維數據

2020-03-29 08:27:05

Promise異步編程前端

2017-11-07 12:35:53

比特幣區塊鏈虛擬貨幣

2023-06-26 08:20:02

openapi格式注解

2021-01-22 07:48:07

JavaScript 高階函數閉包

2021-04-07 19:44:27

JavaStringHashMap

2018-07-17 16:26:17

大數據營銷消費者

2016-01-07 11:18:50

用戶畫像

2011-05-16 10:13:29

HandlerSock

2021-02-03 14:43:40

人工智能人臉識別

2019-11-13 23:33:16

工業物聯網IIOT物聯網

2015-10-23 09:34:16

2011-08-31 13:12:36

2024-04-03 09:23:31

ES索引分析器
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 中国av在线免费观看 | 精品久久久久久久久亚洲 | 91免费福利视频 | 农村黄性色生活片 | 久久久久久国产精品免费免费男同 | 日韩影院一区 | 久久久久久久一区二区三区 | 能看的av| 国产精品日韩在线 | 亚洲3级| 亚洲第一视频 | 欧美日韩亚洲系列 | 国产亚洲精品精品国产亚洲综合 | 日韩在线国产精品 | 国产精品久久久久久吹潮 | 亚洲成人一区 | 久久精品小短片 | 日韩av在线免费 | 九九热这里 | 日本精品国产 | 久在线精品视频 | 亚洲国产精品久久久 | 中文字幕免费观看 | 午夜小电影 | 日韩一级欧美一级 | 精品国模一区二区三区欧美 | 一区二区三区视频在线观看 | 成人影院在线观看 | 国产在线观看福利 | 欧美日韩在线一区二区 | 亚洲成人高清 | 一区二区三区精品视频 | 久久精品日 | 国产精品178页 | 理论片免费在线观看 | 欧美在线网站 | 免费观看日韩精品 | 荷兰欧美一级毛片 | 亚洲网站在线观看 | 九九热在线免费观看 | 久草.com|