目前最流行的15個機器學習框架,你知道幾個?
機器學習工程師是開發產品和構建算法團隊中很重要的一部分,他們和數據專家密切合作來了解理論知識和行業應用。數據專家和機器學習工程師的主要區別是:
- 機器學習工程師構建、開發和維護機器學習系統的產品
- 數據專家進行調查研究形成有關于機器學習項目的想法,然后分析來理解機器學習系統的度量影響
下面就來介紹一下目前***的15個機器學習框架:
1. Apache Singa
Apache Singa是一個用于在大型數據集上訓練深度學習的通用分布式深度學習平臺,它是基于分層抽象的簡單開發模型設計的。它還支持各種當前流行的深度學習模型,有前饋模型(卷積神經網絡,CNN),能量模型(受限玻爾茲曼機,RBM和循環神經網絡,RNN),還為用戶提供了許多內嵌層。
2. Amazon Machine Learning(AML)
Amazon Machine Learning(AML)是一種讓各種級別使用機器學習技術的開發人員可輕松掌握的一個服務,提供了視覺工具和向導,可以指導您在不必學習復雜的機器學習算法和技術的情況下建立機器學習。
3. Azure ML Studio
Azure ML Studio允許微軟Azure的用戶創建和訓練模型,隨后將這些模型轉化為能被其他服務使用的API。盡管您可以將自己的Azure存儲鏈接到更大模型的服務,但是每個賬戶模型數據的存儲容量最多不超過10GB。在Azure中有大量的算法可供使用,這要感謝微軟和一些第三方。甚至都不需要注冊賬號,就可以匿名登錄,使用Azure ML Studio服務長達8小時。
4. Caffe
Caffe是由伯克利視覺學習中心(BLVC)和社區貢獻者們基于BSD-2-協議開發的一個深度學習框架,它秉承“表示、效率和模塊化”的開發理念。模型和組合優化通過配置而不是硬編碼實現,并且用戶可根據需要在CPU處理和GPU處理之間進行切換,Caffe的高效性使其在實驗研究和產業部署中的表現很***,使用單個NVIDIA K40 GPU處理器每天即可處理超過六千萬張圖像 。
5. H2O
H2O使人輕松地應用數學和預測分析來解決當今***挑戰性的商業問題,它巧妙的結合了目前在其他機器學習平臺還未被使用的獨有特點:***開源技術,易于使用的WebUI和熟悉的界面,支持常見的數據庫和不同文件類型。用H2O,您可以使用現有的語言和工具。此外,也還可以無縫擴展到Hadoop環境中。
6. Massive Online Analysis (MOA)
Massive Online Analysis (MOA)是目前***的數據流挖掘開源框架,擁有一個非常活躍的社區。它包含一系列的機器學習算法(分類,回歸,聚類,離群檢測,概念漂移檢測和推薦系統)和評價工具。和WEKA項目一樣,MOA 也是用Java編寫,但擴展性更好。
7. MLlib (Spark)
MLlib (Spark)是Apache Spark的機器學習庫,目的是讓機器學習實現可伸縮性和易操作性,它由常見的學習算法和實用程序組成,包括分類、回歸、聚類,協同過濾、降維,同時包括底層優化原生語言和高層管道API。
8. Mlpack
Mlpack是一個基于C++的基礎學習庫 ,最早于2011年推出,據庫的開發者聲稱,它秉承“可擴展性、高效性和易用性”的理念來設計的。執行Mlpack有兩種方法:通過快速處理簡易的“黑盒”操作命令行執行的緩存,或者借助C++ API處理較為復雜的工作。Mlpack可提供簡單的能被整合到大型的機器學習解決方案中的命令行程序和C++的類。
9. Pattern
Pattern是Python編程語言的web挖掘組件,有數據挖掘工具( Google、Twitter 、Wikipedia API,網絡爬蟲,HTML DOM解析器),自然語言處理(詞性標注,n-gram搜索,情感分析,WordNet接口),機器學習(向量空間模型,聚類,支持向量機),網絡分析和可視化。
10. Scikit-Learn
Scikit-Learn為了數學和科學工作,基于現有的幾個Python包(Numpy,SciPy和matplotlib)拓展了Python的使用范圍。最終生成的庫既可用于交互式工作臺應用程序,也可嵌入到其他軟件中進行復用。該工具包基于BSD協議,是完全免費開源的,可重復利用。Scikit-Learn中含有多種用于機器學習任務的工具,如聚類,分類,回歸等。Scikit-Learn是由擁有眾多開發者和機器學習專家的大型社區開發的,因此,Scikit-Learn中最前沿的技術往往會在很短時間內被開發出來。
11. Shogu
Shogu是最早的機器學習庫之一,它創建于1999年,用C++開發,但并不局限于C++環境。借助SWIG庫,Shogun適用于各種語言環境,如Java,Python,c#,Ruby,R,Lua,Octave和Mablab。Shogun 旨在面向廣泛的特定類型和學習配置環境進行統一的大規模學習,如分類,回歸或探索性數據分析。
12. TensorFlow
TensorFlow是一個使用數據流圖進行數值運算的開源軟件庫,它實現了數據流圖,其中,張量(“tensors”)可由一系列圖形描述的算法來處理,數據在該系統中的變化被稱為“流”,由此而得名。數據流可用C++或Python編碼后在CPU或GPU的設備上運行。
13. Theano
Theano是一個基于BSD協議發布的可定義、可優化和可數值計算的Phython庫。使用Theano也可以達到與用C實現大數據處理的速度相媲美,是支持高效機器學習的算法。
14.Torch
Torch是一種廣泛支持把GPU放在首位的機器學習算法的科學計算框架。由于使用了簡單快速的腳本語言LuaJIT和底層的C/CUDA來實現,使得該框架易于使用且高效。Torch目標是讓您通過極其簡單的過程、***的靈活性和速度建立自己的科學算法。Torch是基于Lua開發的,擁有一個龐大的生態社區驅動庫包設計機器學習、計算機視覺、信號處理,并行處理,圖像,視頻,音頻和網絡等。
15. Veles
Veles是一套用C++開發的面向深層學習應用程序的分布式平臺,不過它利用Python在節點間自動操作與協作任務。在相關數據集中到該集群之前,可對數據進行分析與自動標準化調整,且REST API允許將各已訓練模型立即添加至生產環境當中,它側重于性能和靈活性。Veles幾乎沒有硬編碼,可對所有廣泛認可的網絡拓撲結構進行訓練,如全卷積神經網絡,卷積神經網絡,循環神經網絡等。