成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

新聞 機器學習
自 NeRF 被提出后,有多項研究對其加以改進。在本篇論文中,上海科技大學的研究者提出了首個將顯式不透明監督和卷積機制結合到神經輻射場框架中以實現高質量外觀的方案。

 [[402913]]

模糊復雜目標的高真實感建模和渲染對于許多沉浸式 VR/AR 應用至關重要,其中物體的亮度與顏色和視圖強相關。在本文中,來自上??萍即髮W的研究者提出了一種使用卷積神經渲染器為模糊目標生成不透明輻射場的新方案,這是首個將顯式不透明監督和卷積機制結合到神經輻射場框架中以實現高質量外觀的方案,并以任意新視角生成全局一致的 alpha 蒙版。

具體而言,該研究提出了一種有效的采樣策略以及攝像機光線和圖像平面,從而能夠進行有效的輻射場采樣,并以 patch-wise 的方式學習。同時,該研究還提出了一種新型的體積特征集成方案,該方案會生成 per-patch 混合特征嵌入,以重建視圖一致的精細外觀和不透明輸出。

此外,該研究進一步采用 patch-wise 對抗訓練方案,以在自監督框架中同時保留高頻外觀和不透明細節。該研究還提出了一種高效的多視圖圖像捕獲系統,以捕獲挑戰性模糊目標的高質量色彩和 alpha 圖。在現有數據集和新的含有挑戰性模糊目標的數據集上進行的大量實驗表明,該研究提出的新方法可以對多種模糊目標實現高真實感、全局一致、外觀精細的不透明自由視角渲染。

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

論文地址:https://arxiv.org/abs/2104.01772

該研究的主要貢獻包括:

  • 提出了一種新型卷積神經輻射場生成方案,用于重建高頻和新視圖中模糊目標的全局一致的外觀和不透明度,并顯著超越了此前的 SOTA 性能;
  • 為了啟用卷積機制,該研究提出了高效的采樣策略,混合特征融合以及用于 patch-wise 輻射場學習的自監督對抗訓練方案;
  • 提出了一種高效的多視圖系統,以捕獲顏色和 alpha 圖,以應對具有挑戰性的模糊目標,該研究的捕獲數據集可用于激發進一步的研究。

方法框架

研究者在論文中詳細介紹了新提出的卷積神經不透明輻射場(convolutional neural opacity radiance field, ConvNeRF)。該模型基于捕獲系統的 RGBA 輸入,能夠在新視圖中實現高真實感、全局一致的外觀和不透明渲染,如下圖所示:

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

端到端 ConvNeRF pipeline 概覽

給定多視圖 RGBA 圖像,研究者使用 SFS(Shape-From-Silhouette)來為高效射線采樣推斷代理幾何。對于體積空間中的每個樣本點,位置和方向都會饋入到一個基于多層感知機(MLP)的特征預測網絡,以在全局水平上表征對象。然后,研究者將附近的射線合并為局部特征 patch,并使用卷積體渲染器將其解碼為 RGB 和蒙版。他們在最終輸出上使用對抗訓練策略,以促成精細的表面細節。在 reference 階段,該方法一次渲染整個圖像,而不是渲染每個 patch。

該方法的主要思想是使用空間卷積機制對不透明信息進行顯式編碼,以改進神經輻射場方法(NeRF),對高頻細節進行建模。受 NeRF 啟發,研究者采用了類似的隱式神經輻射場來表征使用多層感知器的場景,以及沿投射射線方向預測密度和顏色值的體融合(volumetric integration)。

不同的是,ConvNeRF 通過空間卷積設計進一步顯式編碼不透明度,以顯著改進神經輻射場重建。為此,研究者首先提出一種高效的采樣策略,不僅利用沿攝像機光線的先驗固有輪廓,還要編碼整個圖像平面上的空間信息。接著采用一種全局幾何表征法將 3D 位置映射成高級輻射特征,并通過一種新型體融合方案生成 per-patch 混合特征嵌入,這樣一來分別對外觀和不透明度的特征進行建模,從而以 patch-wise 的方式進行更高效的輻射場學習。

最后,研究者使用一個輕量級的 U-Net 來將特征 patch 解碼為視圖一致的外觀和不透明度輸出,并進一步采用了一種 patch-wise 對抗訓練方案,以在自監督框架中保留高頻外觀和不透明度細節。

捕獲系統

該研究用到的捕獲系統(capture system)能夠生成高質量的多視圖 RGBA 圖像,用于對具有挑戰性的模糊目標進行顯式不透明度建模。

如下捕獲系統概覽圖所示,該方法的 pipeline 配備了易于使用的捕獲設備以及穩定的校驗和自動摳圖方法。

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

實驗結果

該研究在多種毛茸茸物體上評估了 ConvNeRF。定量和定性評估實驗的結果表明:與之前的工作相比,該方法可以更好地保留高保真外觀細節,并在任意新視圖中生成全局一致的 alpha 蒙版。該研究進一步進行了消融實驗,以驗證該方法的設計選擇。

如下圖 6 所示,在 Cat、Girl、Wolf 數據集上,研究者對該方法與 IBOH、NOPC、和 NeRF 的自由視點 RGB 進行了對比。結果發現,該方法能夠在保留幾何全局視圖一致性的同時重建幾何和外觀上的精細細節,例如貓的毛皮紋理、女孩靴子上的圖案以及狼毛的幾何細節。IBOH 表現出重影和混疊,NOPC 存在過度模糊和幾何細節的損失,而 NeRF 則表現出過多的噪聲和模糊。

下圖 7 展示了在 Cat、Hairstyle 2 數據集上,該方法與 IBOH、NOPC 和 NeRF 的自由視點 Alpha 效果比較。結果發現,該方法可以從視線不一致的 alpha 蒙版中恢復缺失的部分不透明度,例如貓的胡須,如第一行所示,而 IBOH 則會失敗,并出現嚴重的偽影。該方法可以產生比 NOPC 更銳利(sharp)的 alpha 蒙版,后者會在頭發周圍產生嚴重的偽影。而 NeRF 在富有挑戰性的 Hairstyle 2 數據集上失敗了。

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

在定量評估方面,研究者使用 PSNR、LPIPS 和 SSIM 作為指標定量評估了幾種方法。如下表 1 和表 2 所示,ConvNeRF 在 RGB 和 alpha 結果上都實現了顯著的性能提升。

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

下表 3 展示了在半透明(即 0 < α < 1)區域上,所有數據集的平均 PSNR,該方法實現了 SOTA 性能。

高真實感、全局一致、外觀精細,面向模糊目標的NeRF方案出爐

 

責任編輯:張燕妮 來源: 機器之心Pro
相關推薦

2024-04-24 11:29:54

模型雷達

2025-04-09 08:23:49

2011-04-27 13:25:56

佳能傳真機用戶體驗

2012-06-26 10:05:40

程序員

2023-12-13 13:49:00

模型訓練

2020-05-06 21:52:19

蘋果iPhone 11手機

2023-04-25 17:13:03

模型AI

2013-07-23 09:38:09

外包女程序員感受

2025-01-13 12:31:40

2024-07-22 09:49:39

C#代碼XAML文件汽車動態速度表盤

2024-01-10 08:01:55

高并發場景悲觀鎖

2022-12-20 10:58:49

數據集工具

2024-12-11 09:16:38

2017-07-25 14:38:56

數據庫一致性非鎖定讀一致性鎖定讀

2025-04-18 09:21:00

2017-03-24 16:54:52

PhxSQL微信開源MySQL

2023-05-09 10:59:33

緩存技術派MySQL

2021-06-06 12:45:41

分布式CAPBASE

2017-09-22 12:08:01

數據庫分布式系統互聯網

2022-12-14 08:23:30

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产精品久久一区二区三区 | 亚洲精品免费在线 | 欧美最猛性xxxxx亚洲精品 | 爱综合 | 三级黄色片在线 | 日日夜夜精品免费视频 | 青青久久| 一区二区三区不卡视频 | 日韩在线播放网址 | 激情欧美日韩一区二区 | 综合色播| 欧美日韩在线一区二区 | 欧美三级在线 | 久久最新 | 成人精品鲁一区一区二区 | 精品久久香蕉国产线看观看亚洲 | 中文字幕一区二区三区乱码在线 | 永久精品 | 国产精品视频一二三区 | 蜜月va乱码一区二区三区 | 久一久 | 夜夜爽99久久国产综合精品女不卡 | 精品欧美乱码久久久久久 | 999久久久 | 一区二区三区国产 | 日韩成人在线视频 | 国产欧美一区二区久久性色99 | 丁香综合 | 日韩在线一区二区三区 | 日韩成年人视频在线 | 亚洲视频国产视频 | 久久久精品一区 | 天天操天天干天天爽 | 国产精品毛片一区二区三区 | 亚洲一区中文字幕在线观看 | 精品免费视频 | 日韩免费网站 | 日韩成人精品视频 | 久久久毛片 | 久久精品一二三影院 | 91在线视频免费观看 |