成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

通過 Docker-Compose 快速部署 Hive 詳細教程

大數據 Hadoop
通過 docker-compose 部署的服務主要是用最少的資源和時間成本快速部署服務,方便小伙伴學習、測試、驗證功能等等~

一、概述

其實通過 docker-compose 部署 hive 是在繼上篇文章 Hadoop 部署的基礎之上疊加的,Hive 做為最常用的數倉服務,所以是有必要進行集成的,感興趣的小伙伴請認真閱讀我以下內容,通過 docker-compose 部署的服務主要是用最少的資源和時間成本快速部署服務,方便小伙伴學習、測試、驗證功能等等~

二、前期準備

1)部署 docker

# 安裝yum-config-manager配置工具
yum -y install yum-utils

# 建議使用阿里云yum源:(推薦)
#yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

# 安裝docker-ce版本
yum install -y docker-ce
# 啟動并開機啟動
systemctl enable --now docker
docker --version

2)部署 docker-compose

curl -SL https://github.com/docker/compose/releases/download/v2.16.0/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose
docker-compose --version

三、創建網絡

# 創建,注意不能使用hadoop-network,要不然啟動hs2服務的時候會有問題!!!
docker network create hadoop-network

# 查看
docker network ls

四、MySQL 部署

1)mysql 鏡像

docker pull  mysql:5.7
docker tag mysql:5.7 registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/mysql:5.7

2)配置

mkdir -p conf/ data/db/

cat >conf/my.cnf<<EOF
[mysqld]
character-set-server=utf8
log-bin=mysql-bin
server-id=1
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
datadir = /var/lib/mysql
sql_mode=STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
symbolic-links=0
secure_file_priv =
wait_timeout=120
interactive_timeout=120
default-time_zone = '+8:00'
skip-external-locking
skip-name-resolve
open_files_limit = 10240
max_connections = 1000
max_connect_errors = 6000
table_open_cache = 800
max_allowed_packet = 40m
sort_buffer_size = 2M
join_buffer_size = 1M
thread_cache_size = 32
query_cache_size = 64M
transaction_isolation = READ-COMMITTED
tmp_table_size = 128M
max_heap_table_size = 128M
log-bin = mysql-bin
sync-binlog = 1
binlog_format = ROW
binlog_cache_size = 1M
key_buffer_size = 128M
read_buffer_size = 2M
read_rnd_buffer_size = 4M
bulk_insert_buffer_size = 64M
lower_case_table_names = 1
explicit_defaults_for_timestamp=true
skip_name_resolve = ON
event_scheduler = ON
log_bin_trust_function_creators = 1
innodb_buffer_pool_size = 512M
innodb_flush_log_at_trx_commit = 1
innodb_file_per_table = 1
innodb_log_buffer_size = 4M
innodb_log_file_size = 256M
innodb_max_dirty_pages_pct = 90
innodb_read_io_threads = 4
innodb_write_io_threads = 4
EOF

3)編排

version: '3'
services:
db:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/mysql:5.7 #mysql版本
container_name: mysql
hostname: mysql
volumes:
- ./data/db:/var/lib/mysql
- ./conf/my.cnf:/etc/mysql/mysql.conf.d/mysqld.cnf
restart: always
ports:
- 13306:3306
networks:
- hadoop_network
environment:
MYSQL_ROOT_PASSWORD: 123456 #訪問密碼
secure_file_priv:
healthcheck:
test: ["CMD-SHELL", "curl -I localhost:3306 || exit 1"]
interval: 10s
timeout: 5s
retries: 3

# 連接外部網絡
networks:
hadoop_network:
external: true

4)部署 mysql

docker-compose -f mysql-compose.yaml up -d
docker-compose -f mysql-compose.yaml ps

# 登錄容器
mysql -uroot -p123456

圖片

四、Hive 部署

1)下載 hive

下載地址:http://archive.apache.org/dist/hive

# 下載
wget http://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz

# 解壓
tar -zxvf apache-hive-3.1.3-bin.tar.gz

2)配置

images/hive-config/hive-site.xml

<?xml versinotallow="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- 配置hdfs存儲目錄 -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive_remote/warehouse</value>
</property>

<property>
<name>hive.metastore.local</name>
<value>false</value>
</property>

<!-- 所連接的 MySQL 數據庫的地址,hive_local是數據庫,程序會自動創建,自定義就行 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://mysql:3306/hive_metastore?createDatabaseIfNotExist=true&useSSL=false&serverTimeznotallow=Asia/Shanghai</value>
</property>

<!-- MySQL 驅動 -->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<!--<value>com.mysql.cj.jdbc.Driver</value>-->
<value>com.mysql.jdbc.Driver</value>
</property>

<!-- mysql連接用戶 -->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>

<!-- mysql連接密碼 -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>

<!--元數據是否校驗-->
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>

<property>
<name>system:user.name</name>
<value>root</value>
<description>user name</description>
</property>

<property>
<name>hive.metastore.uris</name>
<value>thrift://hive-metastore:9083</value>
</property>

<!-- host -->
<property>
<name>hive.server2.thrift.bind.host</name>
<value>0.0.0.0</value>
<description>Bind host on which to run the HiveServer2 Thrift service.</description>
</property>

<!-- hs2端口 默認是10000-->
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>

<property>
<name>hive.server2.active.passive.ha.enable</name>
<value>true</value>
</property>

</configuration>

3)啟動腳本

#!/usr/bin/env sh


wait_for() {
echo Waiting for $1 to listen on $2...
while ! nc -z $1 $2; do echo waiting...; sleep 1s; done
}

start_hdfs_namenode() {

if [ ! -f /tmp/namenode-formated ];then
${HADOOP_HOME}/bin/hdfs namenode -format >/tmp/namenode-formated
fi

${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start namenode

tail -f ${HADOOP_HOME}/logs/*namenode*.log
}

start_hdfs_datanode() {

wait_for $1 $2

${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start datanode

tail -f ${HADOOP_HOME}/logs/*datanode*.log
}

start_yarn_resourcemanager() {

${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start resourcemanager

tail -f ${HADOOP_HOME}/logs/*resourcemanager*.log
}

start_yarn_nodemanager() {

wait_for $1 $2

${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start nodemanager

tail -f ${HADOOP_HOME}/logs/*nodemanager*.log
}

start_yarn_proxyserver() {

wait_for $1 $2

${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start proxyserver

tail -f ${HADOOP_HOME}/logs/*proxyserver*.log
}

start_mr_historyserver() {

wait_for $1 $2

${HADOOP_HOME}/bin/mapred --loglevel INFO --daemon start historyserver

tail -f ${HADOOP_HOME}/logs/*historyserver*.log
}

start_hive_metastore() {

if [ ! -f ${HIVE_HOME}/formated ];then
schematool -initSchema -dbType mysql --verbose > ${HIVE_HOME}/formated
fi

$HIVE_HOME/bin/hive --service metastore

}

start_hive_hiveserver2() {

$HIVE_HOME/bin/hive --service hiveserver2
}


case $1 in
hadoop-hdfs-nn)
start_hdfs_namenode
;;
hadoop-hdfs-dn)
start_hdfs_datanode $2 $3
;;
hadoop-yarn-rm)
start_yarn_resourcemanager
;;
hadoop-yarn-nm)
start_yarn_nodemanager $2 $3
;;
hadoop-yarn-proxyserver)
start_yarn_proxyserver $2 $3
;;
hadoop-mr-historyserver)
start_mr_historyserver $2 $3
;;
hive-metastore)
start_hive_metastore $2 $3
;;
hive-hiveserver2)
start_hive_hiveserver2 $2 $3
;;
*)
echo "請輸入正確的服務啟動命令~"
;;
esac

4)構建鏡像 Dockerfile

FROM registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1

COPY hive-config/* ${HIVE_HOME}/conf/

COPY bootstrap.sh /opt/apache/

COPY mysql-connector-java-5.1.49/mysql-connector-java-5.1.49-bin.jar ${HIVE_HOME}/lib/

RUN sudo mkdir -p /home/hadoop/ && sudo chown -R hadoop:hadoop /home/hadoop/

#RUN yum -y install which

開始構建鏡像

# 構建鏡像
docker build -t registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1 . --no-cache

# 推送鏡像(可選)
docker push registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1

### 參數解釋
# -t:指定鏡像名稱
# . :當前目錄Dockerfile
# -f:指定Dockerfile路徑
# --no-cache:不緩存

5)編排

version: '3'
services:
hadoop-hdfs-nn:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-hdfs-nn
hostname: hadoop-hdfs-nn
restart: always
privileged: true
env_file:
- .env
ports:
- "30070:${HADOOP_HDFS_NN_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-nn"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_NN_PORT} || exit 1"]
interval: 20s
timeout: 20s
retries: 3
hadoop-hdfs-dn-0:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-hdfs-dn-0
hostname: hadoop-hdfs-dn-0
restart: always
depends_on:
- hadoop-hdfs-nn
env_file:
- .env
ports:
- "30864:${HADOOP_HDFS_DN_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-hdfs-dn-1:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-hdfs-dn-1
hostname: hadoop-hdfs-dn-1
restart: always
depends_on:
- hadoop-hdfs-nn
env_file:
- .env
ports:
- "30865:${HADOOP_HDFS_DN_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-hdfs-dn-2:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-hdfs-dn-2
hostname: hadoop-hdfs-dn-2
restart: always
depends_on:
- hadoop-hdfs-nn
env_file:
- .env
ports:
- "30866:${HADOOP_HDFS_DN_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-yarn-rm:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-yarn-rm
hostname: hadoop-yarn-rm
restart: always
env_file:
- .env
ports:
- "30888:${HADOOP_YARN_RM_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-rm"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_RM_PORT} || exit 1"]
interval: 20s
timeout: 20s
retries: 3
hadoop-yarn-nm-0:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-yarn-nm-0
hostname: hadoop-yarn-nm-0
restart: always
depends_on:
- hadoop-yarn-rm
env_file:
- .env
ports:
- "30042:${HADOOP_YARN_NM_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-yarn-nm-1:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-yarn-nm-1
hostname: hadoop-yarn-nm-1
restart: always
depends_on:
- hadoop-yarn-rm
env_file:
- .env
ports:
- "30043:${HADOOP_YARN_NM_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-yarn-nm-2:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-yarn-nm-2
hostname: hadoop-yarn-nm-2
restart: always
depends_on:
- hadoop-yarn-rm
env_file:
- .env
ports:
- "30044:${HADOOP_YARN_NM_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-yarn-proxyserver:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-yarn-proxyserver
hostname: hadoop-yarn-proxyserver
restart: always
depends_on:
- hadoop-yarn-rm
env_file:
- .env
ports:
- "30911:${HADOOP_YARN_PROXYSERVER_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-proxyserver hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_PROXYSERVER_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hadoop-mr-historyserver:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hadoop-mr-historyserver
hostname: hadoop-mr-historyserver
restart: always
depends_on:
- hadoop-yarn-rm
env_file:
- .env
ports:
- "31988:${HADOOP_MR_HISTORYSERVER_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-mr-historyserver hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_MR_HISTORYSERVER_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 3
hive-metastore:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hive-metastore
hostname: hive-metastore
restart: always
depends_on:
- hadoop-hdfs-dn-2
env_file:
- .env
ports:
- "30983:${HIVE_METASTORE_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hive-metastore hadoop-hdfs-dn-2 ${HADOOP_HDFS_DN_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${HIVE_METASTORE_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 5
hive-hiveserver2:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop_hive:v1
user: "hadoop:hadoop"
container_name: hive-hiveserver2
hostname: hive-hiveserver2
restart: always
depends_on:
- hive-metastore
env_file:
- .env
ports:
- "31000:${HIVE_HIVESERVER2_PORT}"
command: ["sh","-c","/opt/apache/bootstrap.sh hive-hiveserver2 hive-metastore ${HIVE_METASTORE_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${HIVE_HIVESERVER2_PORT} || exit 1"]
interval: 30s
timeout: 30s
retries: 5

# 連接外部網絡
networks:
hadoop-network:
external: true

6)開始部署

docker-compose -f docker-compose.yaml up -d

# 查看
docker-compose -f docker-compose.yaml ps

圖片

簡單測試驗證

圖片

【問題】如果出現以下類似的錯誤,是因為多次啟動,之前的數據還在,但是datanode的IP是已經變了的(宿主機部署就不會有這樣的問題,因為宿主機的IP是固定的),所以需要刷新節點,當然也可清理之前的舊數據,不推薦清理舊數據,推薦使用刷新節點的方式(如果有對外掛載的情況下,像我這里沒有對外掛載,是因為之前舊容器還在,下面有幾種解決方案):

org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.server.protocol.DisallowedDatanodeException): Datanode denied communication with namenode because the host is not in the include-list: DatanodeRegistration(172.30.0.12:9866, datanodeUuid=f8188476-4a88-4cd6-836f-769d510929e4, infoPort=9864, infoSecurePort=0, ipcPort=9867, storageInfo=lv=-57;cid=CID-f998d368-222c-4a9a-88a5-85497a82dcac;nsid=1840040096;c=1680661390829)

圖片

【解決方案】

  1. 刪除舊容器重啟啟動
# 清理舊容器
docker rm `docker ps -a|grep 'Exited'|awk '{print $1}'`

# 重啟啟動服務
docker-compose -f docker-compose.yaml up -d

# 查看
docker-compose -f docker-compose.yaml ps
  1. 登錄 namenode 刷新 datanode
docker exec -it hadoop-hdfs-nn hdfs dfsadmin -refreshNodes
  1. 登錄 任意節點刷新 datanode
# 這里以 hadoop-hdfs-dn-0 為例
docker exec -it hadoop-hdfs-dn-0 hdfs dfsadmin -fs hdfs://hadoop-hdfs-nn:9000 -refreshNodes

責任編輯:武曉燕 來源: 大數據與云原生技術分享
相關推薦

2023-06-26 00:07:14

2023-05-29 07:39:49

2023-11-27 00:18:38

2023-10-23 00:06:29

2023-05-14 23:30:38

PrestoHadoop函數

2023-09-08 08:14:14

2024-03-26 00:00:01

2022-11-19 09:30:31

開源容器

2019-09-17 08:00:24

DockerCompose命令

2023-03-26 09:08:36

2025-05-22 10:00:00

DockerRedis容器

2023-10-10 13:49:00

Docker容器

2025-04-14 08:00:00

Docker命令運維

2017-05-23 15:53:52

docker服務容器

2025-04-10 08:35:00

容器編排Docker容器化

2023-10-10 00:09:14

2024-10-28 15:40:26

2014-12-26 10:06:48

Docker容器代碼部署

2023-09-26 01:07:34

2023-09-27 06:26:07

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: av片网| 一区二区免费视频 | 伦理一区二区 | 久久影音先锋 | 国产精品久久久久一区二区三区 | 日日操视频 | 天天干天天干 | 在线免费观看视频黄 | 久久精品中文字幕 | 黑人久久久 | 天天拍天天操 | 一级毛片中国 | 精品一区av | 久久成人免费视频 | 国产精品美女久久久久久免费 | 九色 在线 | 国产中文字幕在线 | 少妇一级淫片免费播放 | 精品国产乱码久久久久久丨区2区 | 最新午夜综合福利视频 | 国产精品视频免费 | 日本午夜精品 | 欧美日韩国产精品一区 | 国产美女高潮 | 91精品导航 | 我要看一级片 | 就操在线| 国产中文字幕av | 欧美一区二区三区精品免费 | 欧美极品在线播放 | 性欧美hd | 羞羞视频免费在线观看 | 精品国产一区二区三区观看不卡 | 亚洲天天干 | 国产自产21区 | 亚洲成年人免费网站 | 中文字幕在线第一页 | 91深夜福利视频 | 自拍第一页 | 欧美视频福利 | www.狠狠干 |