成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

NLP七十年!斯坦福教授Manning長文梳理:十年后的基礎模型能成AGI嗎?

人工智能 新聞
從手工規則、神經網絡到Transformer基礎模型,自然語言處理的未來是統一多模態,走向通用人工智能!

過去十年間,僅靠簡單的神經網絡計算,以及大規模的訓練數據支持,自然語言處理領域取得了相當大的突破,由此訓練得到的預訓練語言模型,如BERT、GPT-3等模型都提供了強大的通用語言理解、生成和推理能力。

前段時間,斯坦福大學大學教授Christopher D. Manning在Daedalus期刊上發表了一篇關于「人類語言理解和推理」的論文,主要梳理自然語言處理的發展歷史,并分析了基礎模型的未來發展前景。

論文鏈接:https://direct.mit.edu/daed/article/151/2/127/110621/Human-Language-Understanding-amp-Reasoning

論文作者Christopher Manning是斯坦福大學計算機與語言學教授,也是將深度學習應用于自然語言處理領域的領軍者,研究方向專注于利用機器學習方法處理計算語言學問題,以使計算機能夠智能處理、理解并生成人類語言。

Manning教授是ACM Fellow,AAAI Fellow 和ACL Fellow,他的多部著作,如《統計自然語言處理基礎》、《信息檢索導論》等都成為了經典教材,其課程斯坦福CS224n《深度學習自然語言處理》更是無數NLPer的入門必看。

NLP的四個時代

第一時代(1950-1969)

NLP的研究最早始于機器翻譯的研究,當時的人們認為,翻譯任務可以基于二戰期間在碼破譯的成果繼續發展,冷戰的雙方也都在開發能夠翻譯其他國家科學成果的系統,不過在此期間,人們對自然語言、人工智能或機器學習的結構幾乎一無所知。

當時的計算量和可用數據都非常少,雖然最初的系統被大張旗鼓地宣傳,但這些系統只提供了單詞級的翻譯查找和一些簡單的、基于規則的機制來處理單詞的屈折形式(形態學)和詞序。

第二時代(1970-1992)

這一時期可以看到一系列NLP演示系統的發展,在處理自然語言中的語法和引用等現象方面表現出了復雜性和深度,包括Terry Winograd的SHRDLU,Bill Woods的LUNAR,Roger Schank的SAM,加里Hendrix的LIFER和Danny Bobrow的GUS,都是手工構建的、基于規則的系統,甚至還可用用于諸如數據庫查詢之類的任務。

語言學和基于知識的人工智能正在迅速發展,在這個時代的第二個十年,出現了新一代手工構建的系統,在陳述性語言知識和程序處理之間有著明確的界限,并且受益于語言學理論的發展。

第三時代(1993-2012)

在此期間,數字化文本的可用數量顯著提升,NLP的發展逐漸轉為深度的語言理解,從數千萬字的文本中提取位置、隱喻概念等信息,不過仍然只是基于單詞分析,所以大部分研究人員主要專注于帶標注的語言資源,如標記單詞的含義、公司名稱、樹庫等,然后使用有監督機器學習技術來構建模型。

第四時代(2013-現在)

深度學習或人工神經網絡方法開始發展,可以對長距離的上下文進行建模,單詞和句子由數百或數千維的實值向量空間進行表示,向量空間中的距離可以表示意義或語法的相似度,不過在執行任務上還是和之前的有監督學習類似。

2018年,超大規模自監督神經網絡學習取得了重大成功,可以簡單地輸入大量文本(數十億個單詞)來學習知識,基本思想就是在「給定前幾個單詞」的情況下連續地預測下一個單詞,重復數十億次預測并從錯誤中學習,然后就可以用于問答或文本分類任務。

預訓練的自監督方法的影響是革命性的,無需人類標注即可產生一個強大的模型,后續簡單微調即可用于各種自然語言任務。

模型架構

自2018年以來,NLP應用的主要神經網絡模型轉為Transformer神經網絡,核心思想是注意力機制,單詞的表征計算為來自其他位置單詞表征的加權組合。

Transofrmer一個常見的自監督目標是遮罩文本中出現的單詞,將該位置的query, key和value向量與其他單詞進行比較,計算出注意力權重并加權平均,再通過全連接層、歸一化層和殘差連接來產生新的單詞向量,再重復多次增加網絡的深度。

雖然Transformer的網絡結構看起來不復雜,涉及到的計算也很簡單,但如果模型參數量足夠大,并且有大量的數據用來訓練預測的話,模型就可以發現自然語言的大部分結構,包括句法結構、單詞的內涵、事實知識等。

prompt生成

從2018年到2020年,研究人員使用大型預訓練語言模型(LPLM)的主要方法就是使用少量的標注數據進行微調,使其適用于自定義任務。

但GPT-3(Generative Pre-training Transformer-3)發布后,研究人員驚訝地發現,只需要輸入一段prompt,即便在沒有訓練過的新任務上,模型也可以很好地完成。

相比之下,傳統的NLP模型由多個精心設計的組件以流水線的方式組裝起來,先捕獲文本的句子結構和低級實體,然后再識別出更高層次的含義,再輸入到某些特定領域的執行組件中。

在過去的幾年里,公司已經開始用LPLM取代這種傳統的NLP解決方案,通過微調來執行特定任務。

機器翻譯

早期的機器翻譯系統只能在有限的領域中覆蓋有限的語言結構。

2006年推出的谷歌翻譯首次從大規模平行語料中構建統計模型;2016年谷歌翻譯轉為神經機器翻譯系統,質量得到極大提升;2020年再次更新為基于Transformer的神經翻譯系統,不再需要兩種語言的平行語料,而是采用一個巨大的預訓練網絡,通過一個特別的token指示語言類型進行翻譯。

問答任務

問答系統需要在文本集合中查找相關信息,然后提供特定問題的答案,下游有許多直接的商業應用場景,例如售前售后客戶支持等。

現代神經網絡問答系統在提取文本中存在的答案具有很高的精度,也相當擅長分類出不存在答案的文本。

分類任務

對于常見的傳統NLP任務,例如在一段文本中識別出人員或組織名稱,或者對文本中關于產品的情感進行分類(積極或消極),目前最好的系統仍然是基于LPLM的微調。

文本生成

除了許多創造性的用途之外,生成系統還可以編寫公式化的新聞文章,比如體育報道、自動摘要等,也可以基于放射科醫師的檢測結果生成報告。

不過,雖然效果很好,但研究人員們仍然很懷疑這些系統是否真的理解了他們在做什么,或者只是一個無意義的、復雜的重寫系統。

意義(meaning)

語言學、語言哲學和編程語言都在研究描述意義的方法,即指稱語義學方法(denotational semantics)或指稱理論(heory of reference):一個詞、短語或句子的意義是它所描述的世界中的一組對象或情況(或其數學抽象)。

現代NLP的簡單分布語義學認為,一個詞的意義只是其上下文的描述,Manning認為,意義產生于理解語言形式和其他事物之間的聯系網絡,如果足夠密集,就可以很好地理解語言形式的意義。

LPLM在語言理解任務上的成功,以及將大規模自監督學習擴展到其他數據模態(如視覺、機器人、知識圖譜、生物信息學和多模態數據)的廣泛前景,使得AI變得更加通用。

基礎模型

除了BERT和GPT-3這樣早期的基礎模型外,還可以將語言模型與知識圖神經網絡、結構化數據連接起來,或是獲取其他感官數據,以實現多模態學習,如DALL-E模型,在成對的圖像、文本的語料庫進行自監督學習后,可以通過生成相應的圖片來表達新文本的含義。

我們目前還處于基礎模型研發的早期,但未來大多數信息處理和分析任務,甚至像機器人控制這樣的任務,都可以由相對較少的基礎模型來處理。

雖然大型基礎模型的訓練是昂貴且耗時的,但訓練完成后,使其適應于不同的任務還是相當容易的,可以直接使用自然語言來調整模型的輸出。

但這種方式也存在風險:

1. 有能力訓練基礎模型的機構享受的權利和影響力可能會過大;

2. 大量終端用戶可能會遭受模型訓練過程中的偏差影響;

3. 由于模型及其訓練數據非常大,所以很難判斷在特定環境中使用模型是否安全。

雖然這些模型的最終只能模糊地理解世界,缺乏人類水平的仔細邏輯或因果推理能力,但基礎模型的廣泛有效性也意味著可以應用的場景非常多,下一個十年內或許可以發展為真正的通用人工智能。

責任編輯:張燕妮 來源: 新智元
相關推薦

2024-05-06 08:00:00

AI模型

2019-01-21 15:32:19

2013-06-03 09:16:26

云計算

2021-07-12 08:53:21

互聯網 行業數據

2017-11-06 13:59:48

程序員行業趨勢收入

2022-05-30 12:03:05

自動駕駛智能交通

2015-10-22 16:06:44

物聯網生活模式

2017-04-10 13:25:30

2024-07-16 22:45:19

2019-08-15 10:50:38

2019-07-24 09:49:13

程序員工資互聯網

2009-11-23 09:11:11

Chrome OS未來發展

2011-11-07 10:29:39

程序員

2015-01-09 11:46:08

思科錢伯斯

2017-03-09 20:15:20

人工智能深度學習機器學習

2022-03-28 11:41:21

物聯網物聯網市場智能電網

2018-07-23 14:21:24

CTO俱樂部技術管理

2019-10-30 17:54:15

戴爾

2017-12-21 08:04:32

Gartner云計算AWS
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 久草电影网 | 97日日碰人人模人人澡分享吧 | 亚洲欧美日韩中文字幕一区二区三区 | 欧美精品一区二区三区四区 | 午夜ww | 免费看色| 久久久久久久久久久久亚洲 | 狠狠操电影 | 久久毛片 | 久久亚洲高清 | 麻豆精品国产免费 | 看真人视频一级毛片 | 久久99精品久久久久婷婷 | 国产综合久久 | 四虎影院免费在线播放 | 国产羞羞视频在线观看 | www久久久 | 喷水毛片 | 精品国产精品国产偷麻豆 | 九九色综合 | 日韩av在线一区二区 | 亚洲区中文字幕 | 国外成人在线视频 | 国产精品日韩一区二区 | 亚洲免费一区 | 午夜影晥 | 日韩精品av一区二区三区 | 国产成人在线看 | 99热这里有精品 | aa级毛片毛片免费观看久 | 91综合网 | 色屁屁在线观看 | 五月婷婷激情 | 伊人久久综合 | 国产视频一区二区 | 日韩中文字幕网 | 亚洲网站在线观看 | 日日夜夜天天干 | 超碰免费在线观看 | 日本人做爰大片免费观看一老师 | 98成人网 |