成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

突破數據墻!27歲華裔MIT輟學創業8年,年化收入逼近10億

人工智能 新聞
震驚!就在剛剛,Scale AI創始人Alexandr Wang宣布:公司的年化收入已經達到近10億美元。OpenAI的年收入,也僅僅是35-45億美元。數據墻愈漸緊逼的今天,Scale AI早早踩對了風口,如今終于一飛沖天了。

就在剛剛,創業成功的27歲億萬富翁Alexandr Wang宣布——

Scale AI的年化收入,幾乎達到了10億美元!

這個數字,足夠震驚整個硅谷的。

相比之下,OpenAI預估的年收入也只是35-45億美元而已。再減去85億美元的成本,OpenAI今年可能會血虧50億。

圖片

這Scale AI是什么來頭,能在營收上取得如此驚人的成績?

原來,它主攻的就是如今AI模型的一大軟肋——對數據的巨大需求。

圖片


我們正在進入LLM開發的第三階段。

第一階段是早期的試驗,從Transformer到GPT-3

第二階段是規模擴展

第三階段是創新階段:除了o1之外,還需要哪些突破性進展才能讓我們達到新的proto-AGI范式


Scaling Law的存在意味著,隨著模型變大,對數據的需求也呈現指數級增長,越來越多的人擔心大模型會耗盡可用數據。

Scale AI的主營業務——做AI模型的「數據工廠」,恰好處于這個風口之上。

如果能攻克「數據墻」這個AI進步的巨大瓶頸,Alexandr Wang理所當然會賺得盆滿缽滿。

圖片

圖片

在AI浪潮中,賺得盆滿缽滿

生意能做這么大,源于Scale AI越做越成功的一項大業務。

在AI生態圈中,為大公司提供基礎設施或服務支持的業務,市場需求巨大。

Scale AI做的就是后者——為這些公司提供人工數據標注員。幫AI公司提高LLM的準確性。Meta、谷歌等大公司,都是它的客戶。

而且,今年Scale AI的生意越做越紅火了。

跟去年同期相比,它今年上半年的銷售額增長了近4倍,已經接近4億美元。

可以肯定地說,Scale AI是從AI熱潮中受益最多的私營企業之一。

圖片

投資者們當然也看到了這一點。

今年5月,Scale AI以138億美元的估值,進行了新一輪融資。

投資者包括Accel、Founders Fund、Index Ventures、Thrive Capital和Greenoaks Capital等。

并且,除了亞馬遜和Meta之外,Scale AI還吸引了各種各樣的新投資者:思科、英特爾、AMD等風險投資部門參與其中,而且很多注資過的公司也回歸了,包括英偉達、Coatue、Y Combinator等等。

就在近期,Wang手下的高管團隊,再度進行了調整。

首席技術官Arun Murthy將離開公司,而去年離開風投公司Benchmark的前優步高管Jason Droege將加入公司擔任首席戰略官,直接向Wang匯報。

圖片

首席策略官Jason Droege解釋自己為什么要加入Scale AI:這讓我有機會參與到我一生中技術領域最根本的變革中

在Droege看來,Scale解決了人工智能中最困難的挑戰之一:通過數據改進模型。做到這一點需要卓越的人才、復雜的運營和對AI未來發展的強烈愿景。雖然團隊迄今已經取得了矚目成就,但仍處于起步階段。

2023年上半年開始,公司收入激增

這家成立8年的初創公司,一直負責合同工的招聘和培訓,但尚未實現盈利。

然而就在今年上半年,它成功改善了運營的毛利率——每產生1美元收入,只需要花費約1.2美元,而在去年上半年,這一數字為1.5美元。

如今僅考慮業務成本(比如合同工的工資),Scale AI保留的收入只有一半。毛利率這一財務指標,略低于50%。比起2022年上半年約57%的毛利率,這個數字有所下降。

這一水平,大大低于科技投資者對軟件公司的期望。

但盡管如此,5月份的融資還是為Scale AI提供了雄厚的資金實力。截至上半年末,公司還有約9.8億美元的現金。

圖片

從去年上半年開始,公司收入就開始激增。因為構建LLM的客戶需要很多合同工,通過向聊天機器人提交問題、撰寫答案,來訓練AI模型。

在給投資者的PPT上,Scale AI自稱是「一個人機混合系統,以低成本生產高質量數據」。

根據外媒消息,它還通過一家名為Outlier的子公司,雇傭了數十萬個小時工,來進行數據微調。

顯然,Scale AI選擇聚焦LLM客戶,是一種戰略轉型。

圖片

此前,它還有一項類似業務,主要是利用菲律賓和肯尼亞的低成本勞動力,為自動駕駛汽車公司標注數據。但近年來,這項業務的增長已經放緩。

現在,即使雇傭薪酬更高、更專業的合同工,Scale AI的收入也依然能提高,因為它可以將這些更高的成本轉移給客戶。

當然,現在Scale AI也并非硅谷投資者眼中穩賺不賠的投資。投資者擔憂的問題,包括公司較低的毛利率,以及過度依賴少數幾個大客戶的問題。

天才少年輟學創辦獨角獸

Scale AI由Alexandr Wang和Lucy Guo于2016年創立,由著名創業孵化器Y Combinator投資。客戶包括Meta、微軟、英偉達、OpenAI、豐田和哈佛醫學院。

2019年,Scale AI成為獨角獸。

2022年,Alexandr Wang成為全球最年輕的白手起家的億萬富翁。

圖片

Wang于1997年出生于新墨西哥州,父母都是在新墨西哥州洛斯阿拉莫斯國家實驗室的物理學家。

高中階段,他開始通過網絡自學編程,開始參加世界級編程大賽,如美國計算機奧林匹克競賽(USACO)。

17歲,他成為美國知名問答網站Quora的全職碼農;18歲,考入麻省理工學院攻讀機器學習;在MIT大一剛結束后的暑假,他就和Guo一起創辦了Scale,并且拿到了Y Combinator的投資。

Wang跟爸媽說,「這就是我夏天隨便玩玩的事。」

圖片

Scale AI剛起步時,有些人確實覺得這就是一個笑話,畢竟公司當時只有三名員工。

不過,在不斷地融資和發展之下,Scale AI發展飛速,到2021年已經成長為價值73億美元的獨角獸企業,2023年初公司規模也擴展到了700人。

Wang透露,隨著企業客戶競相訓練生成式AI模型,Scale AI的這方面業務快速增長。

2023年,公司年度經常性收入增加了兩倍,預計2024年底將達到14億美元。

圖片

由于Scale AI的驚人成就,Alexandr Wang已經被硅谷公認為「下一個扎克伯格」。

AI模型的「數據工廠」

AI領域公認的三個基本支柱——數據、算法和算力。

算法領域,前有谷歌、微軟的大型研究院,后有推出過Sora和GPT系列模型的OpenAI;算力領域有供貨全球的英偉達,但在Scale AI還未誕生的2016年,數據領域仍處于空白。

19歲的Alexandr Wang在看到這一點后,做出了輟學創業的決定,「我創辦Scale的原因是為了解決人工智能中的數據問題」。

圖片

大部分數據都是非結構化的,AI很難直接學習這些數據;而且大型數據集的標注一項資源密集型工作,因此,「數據」被很多人認為是科技領域最辛苦、最卑微的部分。

但Scale AI卻在短時間內就獲得了巨大成功。他們可以為不同行業的企業客戶量身定制數據服務。

在自動駕駛領域,Cruise和Waymo等公司通過攝像頭和傳感器收集了大量數據,Scale AI將機器學習與「人機回路」監督相結合,管理和標注這些數據。

他們曾經開發的「自治數據引擎」,甚至推動了L4級自動駕駛的發展。

圖片

Wang表示,Scale AI將自己定位為整個AI生態的基礎設施供應商,構建「數據鑄造廠」,而不僅僅是在子公司Remotasks中雇傭大量的合同工進行人工標注。

他強調,來自專家的、包含復雜推理的數據是未來人工智能的必備條件。

傳統的數據來源,比如從Reddit等社區的評論中抓取數據存在局限性。Scale AI構建了一些流程,模型先輸出一些內容,例如撰寫研究論文,在此基礎上,人類專家可以改進這些內容,從而改進模型的輸出。

「雖然人工智能生成的數據很重要,但想要獲得有一定質量和準確性的數據,唯一方法是通過人類專家的驗證。」

Alexandr Wang在Scale AI的官網上這樣寫道,「數據豐富不是默認情況,而是一種選擇,它需要匯集工程、運營和AI方面最優秀的人才」。

Scale AI的愿景之一是「數據豐富」,從而將前沿LLM擴展到更大數量級,「為通向AGI鋪平道路。在達到GPT-10的過程中,我們不應該受到數據的限制」。

圖片

業內盛贊的LLM排行榜更新

Scale AI對業界所做的貢獻,不僅是數據標注這么簡單。

今年5月,Scale AI重磅推出了全新LLM排行榜——SEAL,開始對前沿模型開展專業性評估。

對于這個榜單,Jim Fan大加贊賞。他認為SEAL是LMSys的非常好的補充和參照,提供公開模型的私密、安全、可信的第三方評估。

圖片

對此,Andrej Karpathy也深以為然。

圖片

隨著OpenAI最強模型——o1的推出,SEAL排行榜也第一時間進行了評測。

除了在高級編程、數學和科學等領域表現出色之外,o1系列也為「prompt engineering」(提示工程)引入了新的變化。

圖片

圖片

圖片

在工具使用和指令跟隨方面,o1-preview表現出色。而在編程能力方面,o1-mini奪得榜首,o1-preview緊隨其后位居第二。

- 編程排行榜

在SEAL編程排行榜上,o1-mini以1271分的成績領跑,緊隨其后的是o1-preview,得分為1198。

評估數據集使用了1000個提示詞,用于測試各種編程任務,涵蓋從代碼生成到優化和文檔創建等多個方面。

過程中,每個模型的響應都會從正確性、性能和可讀性三個維度進行評估,綜合運用人工審核和代碼執行測試的方法。

- 指令跟隨排行榜

在對精確指令跟隨能力的評估中,o1-preview以87.27 分的成績領先,超越了知名Claude 3.5 Sonnet和Llama 3.1 405B Instruct。

評估數據集包含1054個跨領域的提示詞,涉及文本生成、頭腦風暴和教育支持等多個方面。

提示工程的變化

與我們熟悉的GPT、Gemini或Claude等模型相比,o1模型的提示詞使用和可操控性明顯不同。

根據OpenAI的建議,簡單直接的指令有助于充分發揮o1的潛力。

與之前的模型不同,用戶應避免要求模型進行思維鏈推理。他們還指出,提示詞中的無關上下文對o1模型的干擾可能比之前的GPT系列更大,因此在檢索增強生成(RAG)提示中加入一些示例很重要。

Cognition Labs發現,要求模型「think out loud」(大聲思考)實際上會損害性能,而只要求給出最終答案反而會提高性能,因為o1模型無論如何都會產生內部的思維鏈。他們還指出,冗長或重復的指令會損害性能,而過于具體的指示似乎會影響模型的推理能力。

雖然o1在基準測試中取得了出色的結果,但讓它完成你自己的具體任務似乎需要更多努力——它們往往會忽視明確(甚至是強調的)關于如何解決問題的指令。

由此可見,現實世界的提示和基準測試中使用的提示之間,實際上存在著不小的差距:后者旨在只包含明確的、自包含的、最小呈現的問題,沒有關于如何解決它們的建議或意見。

需要注意的是,o1-preview響應的延遲,特別是其「首個token的時間」,明顯高于GPT-4o。不過,o1-mini用更快的token推理速度彌補了「思考」的時間。

一些實測

- 詞匯約束

在官方示例中,o1在臭名昭著的「strawberry這個詞中有多少個R?」等「陷阱」任務上,有著不小的改進。

為了驗證這一點,我們向o1-preview提出了一個新編寫的謎語:

「說出一個拉丁語源的英語形容詞,它以相同的字母開頭和結尾,總共有十一個字母,并且詞中所有元音按字母順序排列。」

在第一次嘗試中,模型成功解決了這個謎語,答案是:sententious。

但如果反復提問同一個,o1卻并不能次次做對:

sententious ?

facetiously ?

transparent ?

abstentious ?

facetiously ?

圖片

- 解碼密碼

同樣令人深刻的,還有一個解碼復雜密碼的例子。

類似的,我們也嘗試了這個提示詞的各種變體,包括ROT13密碼、Atbash密碼、Base64編碼、反轉字符串等各種組合。

然而,大多數測試都不成功——在7次嘗試中,o1-preview只有2次能夠解碼給出的加密信息(《沙丘》中的「迎恐禱詞」(the Litany Against Fear))。

在每個prompt中,o1都被要求從OpenAI給出的示例中推斷出一種編碼方式。

在以下每個測試中,o1都未能在一次嘗試中解碼目標消息:

ROT13密碼 → 反轉字符串 → Base64編碼 → 反轉字符串

ROT13密碼 → Base64編碼 → ROT13密碼 → 反轉字符串

ROT13密碼 → Base64編碼 → ROT13密碼

ROT13密碼 → Base64編碼 → Atbash密碼

ROT13密碼 → Base58編碼

在第一次嘗試中成功解碼的兩個測試是:

Atbash密碼 → Base64編碼

ROT13密碼 → Base64編碼

這里展示了第一個成功的例子——其他測試除了使用的編碼不同外,都是相同的:

圖片

圖片

結論

總結來看,OpenAI的o1模型在推理能力方面都取得了重大突破,在AIME、Codeforces、Scale的SEAL排行榜等關鍵基準測試中表現出色。

這些結果表明,o1-preview和o1-mini是解決復雜推理問題的強大工具。然而,要充分發揮這些模型的潛力,可能需要比用戶習慣的其他模型發布更多的實驗和嘗試。

責任編輯:張燕妮 來源: 新智元
相關推薦

2024-07-01 08:10:00

2025-06-10 16:24:59

AI人工智能OpenAI

2025-05-15 09:02:00

2022-08-01 14:31:56

創業技術

2022-12-01 14:36:08

數據中心邊緣數據中心

2013-03-18 09:54:59

VoIP移動通信網絡

2015-08-13 10:11:32

5G

2021-08-12 11:45:26

云計算IaaSPaaS

2022-07-04 11:05:25

公有云云服務

2021-08-31 15:56:06

編程技能開發

2013-01-31 09:53:16

IDC大數據市場

2014-02-01 21:12:10

創業新型計算機

2021-08-17 06:32:22

IaaSPaaS公有云

2014-06-03 10:21:00

2023-10-13 07:31:44

2020-09-08 12:14:40

5G網絡4G

2021-03-31 09:17:13

數據中心基礎設施網絡

2023-08-24 21:33:56

AIAI 芯片

2025-03-03 13:35:28

2010-06-24 16:47:42

思科
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产精品久久久久久52avav | 最近中文字幕在线视频1 | 欧美1页| 欧美精品久久久 | 亚州春色| 国产一区二区三区在线免费观看 | 亚洲精品久久久久国产 | 99精品免费视频 | 国产精品久久久久久久久久久久久 | 日韩视频91| 国产福利视频网站 | 国产欧美日韩精品一区二区三区 | 欧美视频在线看 | 亚洲国产18 | 亚洲免费视频一区 | 国产高清精品一区二区三区 | 久久1区| 日韩在线一区二区三区 | 成人a免费 | 国产电影一区二区在线观看 | 亚洲国产精品成人无久久精品 | 中文字幕一区二区三区在线乱码 | 亚洲午夜精品视频 | 91视频大全 | 亚洲精品久久久久久久久久久 | 日韩一区二区在线视频 | 欧美在线a | 99国内精品久久久久久久 | 亚洲视频一区 | 亚洲国产精品第一区二区 | 日本精品在线观看 | 成人福利电影 | 国产精品久久久久久久久久东京 | 精品久久久一区 | 一区二区日韩 | 一区二区免费在线观看 | 国产欧美日韩一区二区三区在线 | 日韩综合在线播放 | 成人1区 | 亚洲欧美日韩在线不卡 | 欧美二区三区 |