成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

還沒等老板開口,我已經把 ADS 層建好了

大數據
ADS層是數據倉庫與業務系統之間的橋梁,將經過清洗、轉換和匯總的數據以業務友好的方式呈現給最終用戶。今天以我們項目中的實際案例為例進行ADS層建設思路介紹。

這次老板沒催我,我提前就把ADS層給建設好了。ADS(Application Data Store)層是數據倉庫的最頂層,直接面向業務應用,為數據分析、報表展示和業務決策提供數據支持。它是數據倉庫與業務系統之間的橋梁,將經過清洗、轉換和匯總的數據以業務友好的方式呈現給最終用戶。

今天以我們項目中的實際案例為例進行ADS層建設思路介紹。數倉代碼可訪問:這次老板沒催我,我提前就把ADS層給建設好了。ADS(Application Data Store)層是數據倉庫的最頂層,直接面向業務應用,為數據分析、報表展示和業務決策提供數據支持。它是數據倉庫與業務系統之間的橋梁,將經過清洗、轉換和匯總的數據以業務友好的方式呈現給最終用戶。今天以我們項目中的實際案例為例進行ADS層建設思路介紹。

數倉代碼可訪問:

  • github:https://github.com/Mrkuhuo/data-warehouse-learning
  • gitee:https://gitee.com/wzylzjtn/data-warehouse-learning

一、ADS層建設思路

1. 設計原則

  • 業務導向:ADS層設計應以業務需求為核心,確保數據能夠直接支持業務決策和運營分析。
  • 性能優化:針對高頻查詢場景進行優化,包括合理的分區策略、索引設計和物化視圖。
  • 數據一致性:確保數據口徑統一,避免不同報表之間的數據不一致。
  • 可擴展性:設計時考慮未來業務擴展需求,預留足夠的擴展空間。
  • 易用性:提供簡單直觀的數據結構,降低業務人員使用門檻。

2. 數據模型設計

ADS層通常采用星型模型或雪花模型,主要包含以下幾類表:

  • 匯總事實表:按不同維度(時間、地區、產品等)匯總的事實數據。
  • 維度表:包含業務實體的屬性信息,如客戶、產品、地區等。
  • 指標表:存儲預計算的業務指標,如轉化率、留存率等。
  • 報表表:直接面向報表展示的寬表,包含多個維度的指標。

3. 數據更新策略

  • 增量更新:對于大表,采用增量更新策略,只處理新增或變更的數據。
  • 全量刷新:對于小表或需要保證數據一致性的場景,采用全量刷新策略。
  • 定時調度:根據業務需求設置合理的調度周期,如每日、每周或每月。

二、ADS層應用場景

  • 業務報表:為管理層提供決策支持的各類報表。
  • 運營分析:支持運營人員進行用戶行為分析和營銷效果評估。
  • 風險控制:提供風險監控和預警數據。
  • 客戶服務:支持客服人員進行客戶畫像分析和精準服務。
  • 產品優化:為產品團隊提供用戶反饋和使用數據,指導產品迭代。

三、實戰案例:用戶價值分析報表

1. 業務背景

電商平臺需要對用戶進行價值分層,以便進行精準營銷和個性化服務?;赗FM模型(Recency、Frequency、Monetary)對用戶進行價值評估,并計算用戶的生命周期價值,為運營決策提供數據支持。 02

2. 數據來源

  • DWS層:用戶交易寬表(dws_trade_user_order_td)和用戶登錄寬表(dws_user_user_login_td)
  • ADS層:歷史用戶價值分析數據(用于計算價值發展趨勢)

3. 實現方案

(1) 建表(ads.ads_user_value_analysis)

-- 用戶價值分析表
CREATE TABLE IF NOT EXISTS ads.ads_user_value_analysis
(
    dt                      DATE COMMENT '統計日期',
    user_id                 BIGINT COMMENT '用戶ID',
    order_count_td          BIGINT COMMENT '累計下單次數',
    order_amount_td         DECIMAL(20,2) COMMENT '累計下單金額',
    order_last_date         DATE COMMENT '最近下單日期',
    order_first_date        DATE COMMENT '首次下單日期',
    login_count_td          BIGINT COMMENT '累計登錄次數',
    login_last_date         DATE COMMENT '最近登錄日期',
    average_order_amount    DECIMAL(20,2) COMMENT '平均客單價',
    purchase_cycle_days     INT COMMENT '平均購買周期(天)',
    account_days            INT COMMENT '賬號存續天數',
    life_time_value         DECIMAL(20,2) COMMENT '生命周期價值(LTV)',
    recency_score           INT COMMENT '最近活躍度評分(R)',
    frequency_score         INT COMMENT '活動頻次評分(F)',
    monetary_score          INT COMMENT '消費金額評分(M)',
    rfm_score               INT COMMENT 'RFM總分',
    user_value_level        STRING COMMENT '用戶價值分層',
    active_status           STRING COMMENT '活躍狀態',
    life_cycle_status       STRING COMMENT '生命周期狀態',
    shopping_preference     STRING COMMENT '購物偏好',
    growth_trend            STRING COMMENT '價值發展趨勢'
)
COMMENT '用戶價值分層分析報表,基于RFM模型計算用戶價值'
PARTITIONED BY (dt STRING)
STORED AS ORC
TBLPROPERTIES ('orc.compress'='SNAPPY');

(2) 核心指標計算

RFM模型評分:

  • Recency(最近購買時間):根據最近一次購買距今的天數評分(1-5分)
  • Frequency(購買頻率):根據累計購買次數評分(1-5分)
  • Monetary(消費金額):根據累計消費金額評分(1-5分)

用戶價值分層:

  • 高價值:RFM總分≥13分
  • 中高價值:RFM總分10-12分
  • 中價值:RFM總分7-9分
  • 低價值:RFM總分4-6分 流失風險:RFM總分≤3分

生命周期價值(LTV) :

  • 計算公式:平均客單價 × 年購買頻率 × 預期客戶生命周期(年)
  • 年購買頻率:總購買次數×365/賬號存續天數

用戶狀態分類:

  • 活躍狀態:基于最近交易和登錄時間
  • 生命周期狀態:基于交易行為和訂單歷史
  • 購物偏好:基于購買頻率和金額
  • 價值發展趨勢:比較當前RFM評分與30天前的評分

(3) 具體邏輯實現

INSERT INTO ads.ads_user_value_analysis
(dt, user_id, order_count_td, order_amount_td, order_last_date, order_first_date, 
login_count_td, login_last_date, average_order_amount, purchase_cycle_days, account_days, 
life_time_value, recency_score, frequency_score, monetary_score, rfm_score, 
user_value_level, active_status, life_cycle_status, shopping_preference, growth_trend)
SELECT
    -- 基礎日期統計
    date('${pdate}') AS dt,       -- 統計日期,使用調度日期參數
    t1.user_id AS user_id,        -- 用戶ID 
    t1.order_count_td,            -- 累計下單次數,來自交易寬表
    t1.total_amount_td,           -- 累計下單金額,來自交易寬表
    -- 格式化日期為yyyy-MM-dd格式
    date_format(t1.order_last_date, '%Y-%m-%d') AS order_last_date,  -- 最近下單日期
    date_format(t1.order_first_date, '%Y-%m-%d') AS order_first_date, -- 首次下單日期
    t2.login_count_td,            -- 累計登錄次數,來自用戶登錄寬表
    date_format(t2.login_last_date, '%Y-%m-%d') AS login_last_date,  -- 最近登錄日期

    -- 計算衍生指標
    -- 計算平均客單價 = 總金額/訂單數
    CASE WHEN t1.order_count_td > 0 THEN t1.total_amount_td/t1.order_count_td ELSE 0 END AS average_order_amount,
    -- 計算平均購買周期(天) = (最后訂單日期-首次訂單日期)/(訂單數-1)
    CASE WHEN t1.order_count_td > 1 
         THEN datediff(t1.order_last_date, t1.order_first_date)/(t1.order_count_td-1) 
         ELSE NULL END AS purchase_cycle_days,
    -- 計算賬號存續天數 = 當前日期-注冊日期
    datediff(current_date(), t2.register_date) AS account_days,

    -- 計算生命周期價值(LTV) = 平均客單價 * 年購買頻率 * 預期客戶生命周期(年)
    -- 年購買頻率計算方式: 總購買次數*365/賬號存續天數,即年化購買頻率
    -- 預期客戶生命周期取3年作為默認預估
    CASE WHEN t1.order_count_td > 0 AND datediff(current_date(), t2.register_date) > 0 
         THEN (t1.total_amount_td/t1.order_count_td) * (t1.order_count_td*365/datediff(current_date(), t2.register_date)) * 3 
         ELSE 0 END AS life_time_value,

    -- RFM模型計算 - 為每個維度打分(1-5分)
    -- Recency(最近購買時間)評分: 越近分數越高
    CASE 
        WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5  -- 30天內
        WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4  -- 31-60天
        WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3  -- 61-90天
        WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2 -- 91-180天
        ELSE 1                                                          -- 180天以上
    END AS recency_score,

    -- Frequency(購買頻率)評分: 購買次數越多分數越高
    CASE
        WHEN t1.order_count_td >= 20 THEN 5  -- 20次及以上
        WHEN t1.order_count_td >= 10 THEN 4  -- 10-19次
        WHEN t1.order_count_td >= 5 THEN 3   -- 5-9次
        WHEN t1.order_count_td >= 2 THEN 2   -- 2-4次
        ELSE 1                               -- 1次
    END AS frequency_score,

    -- Monetary(消費金額)評分: 總消費金額越高分數越高
    CASE
        WHEN t1.total_amount_td >= 10000 THEN 5  -- 1萬元及以上
        WHEN t1.total_amount_td >= 5000 THEN 4   -- 5千-1萬元
        WHEN t1.total_amount_td >= 2000 THEN 3   -- 2千-5千元
        WHEN t1.total_amount_td >= 500 THEN 2    -- 500-2千元
        ELSE 1                                   -- 500元以下
    END AS monetary_score,

    -- 計算RFM總分 = R分 + F分 + M分
    (CASE 
        WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
        WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
        WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
        WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
        ELSE 1
    END) + 
    (CASE
        WHEN t1.order_count_td >= 20 THEN 5
        WHEN t1.order_count_td >= 10 THEN 4
        WHEN t1.order_count_td >= 5 THEN 3
        WHEN t1.order_count_td >= 2 THEN 2
        ELSE 1
    END) + 
    (CASE
        WHEN t1.total_amount_td >= 10000 THEN 5
        WHEN t1.total_amount_td >= 5000 THEN 4
        WHEN t1.total_amount_td >= 2000 THEN 3
        WHEN t1.total_amount_td >= 500 THEN 2
        ELSE 1
    END) AS rfm_score,

    -- 用戶價值分層: 根據RFM總分(3-15分)進行分層
    CASE
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 13 THEN '高價值'      -- 13-15分
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 10 THEN '中高價值'    -- 10-12分
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 7 THEN '中價值'       -- 7-9分
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 4 THEN '低價值'       -- 4-6分
        ELSE '流失風險'                                                                 -- 3分
    END AS user_value_level,

    -- 活躍狀態: 基于最近交易和登錄時間
    CASE
        WHEN datediff(current_date(), t1.order_last_date) <= 30 OR datediff(current_date(), t2.login_last_date) <= 7 THEN '活躍'   -- 30天內有交易或7天內有登錄
        WHEN datediff(current_date(), t1.order_last_date) <= 90 OR datediff(current_date(), t2.login_last_date) <= 30 THEN '沉默'  -- 90天內有交易或30天內有登錄
        ELSE '流失'                                                                                                               -- 超過90天未交易且超過30天未登錄
    END AS active_status,

    -- 生命周期狀態: 基于交易行為和訂單歷史
    CASE
        WHEN datediff(current_date(), t1.order_first_date) <= 30 AND t1.order_count_td <= 2 THEN '新用戶'     -- 30天內首次購買且購買次數<=2次
        WHEN t1.order_count_td >= 3 AND (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END) >= 4 THEN '成長期'                                      -- 購買>=3次且近期活躍(60天內)
        WHEN t1.order_count_td >= 5 AND (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END) >= 3 THEN '成熟期'                                      -- 購買>=5次且90天內有購買
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END) <= 2 AND (CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END) >= 3 THEN '衰退期'                                        -- 購買次數>=5但超過90天未購買
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END) >= 3 AND datediff(t1.order_last_date, t0.lag_order_date) > 90 THEN '回流'          -- 最近90天內有購買但之前超過90天未購買
        ELSE '新用戶'                                                                                         -- 默認為新用戶
    END AS life_cycle_status,

    -- 購物偏好: 基于購買頻率和金額
    CASE
        WHEN (CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END) >= 4 AND (CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) <= 3 THEN '高頻低額'    -- 高頻率低金額: 購買頻繁但單價較低
        WHEN (CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END) <= 3 AND (CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 4 THEN '低頻高額'    -- 低頻率高金額: 購買較少但大額消費 
        WHEN (CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END) >= 4 AND (CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) >= 4 THEN '高頻高額'    -- 高頻率高金額: 高價值客戶,頻繁且大額
        ELSE '低頻低額'                                                     -- 低頻率低金額: 低價值客戶
    END AS shopping_preference,

    -- 價值發展趨勢: 比較當前RFM評分與30天前的評分
    CASE
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) > COALESCE(t3.previous_rfm_score, 0) THEN '上升'    -- 當前分數高于30天前,趨勢上升
        WHEN (CASE 
            WHEN datediff(current_date(), t1.order_last_date) <= 30 THEN 5
            WHEN datediff(current_date(), t1.order_last_date) <= 60 THEN 4
            WHEN datediff(current_date(), t1.order_last_date) <= 90 THEN 3
            WHEN datediff(current_date(), t1.order_last_date) <= 180 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.order_count_td >= 20 THEN 5
            WHEN t1.order_count_td >= 10 THEN 4
            WHEN t1.order_count_td >= 5 THEN 3
            WHEN t1.order_count_td >= 2 THEN 2
            ELSE 1
        END + 
        CASE
            WHEN t1.total_amount_td >= 10000 THEN 5
            WHEN t1.total_amount_td >= 5000 THEN 4
            WHEN t1.total_amount_td >= 2000 THEN 3
            WHEN t1.total_amount_td >= 500 THEN 2
            ELSE 1
        END) < COALESCE(t3.previous_rfm_score, 0) THEN '下降'    -- 當前分數低于30天前,趨勢下降
        ELSE '穩定'                                                      -- 分數相等,趨勢穩定
    END AS growth_trend
FROM
(
    -- 訂單數據: 獲取用戶交易相關信息
    SELECT 
        user_id,
        k1,
        order_date_last,
        LAG(order_date_last, 1, NULL) OVER(PARTITION BY user_id ORDER BY k1) AS lag_order_date  -- 獲取上一次最近下單日期,用于計算回流狀態
    FROM dws.dws_trade_user_order_td
    WHERE k1 = date('${pdate}')  -- 取當天分區數據
) t0
JOIN
(
    -- 訂單數據: 獲取用戶交易相關信息
    SELECT 
        user_id,
        SUM(order_count_td) AS order_count_td,           -- 累計下單次數
        SUM(total_amount_td) AS total_amount_td,         -- 累計下單金額
        MAX(order_date_last) AS order_last_date,         -- 最近下單日期
        MIN(order_date_first) AS order_first_date        -- 首次下單日期
    FROM dws.dws_trade_user_order_td
    WHERE k1 = date('${pdate}')  -- 取當天分區數據
    GROUP BY user_id
) t1
ON t0.user_id = t1.user_id
JOIN
(
    -- 登錄數據: 獲取用戶登錄相關信息
    SELECT 
        user_id,
        SUM(login_count_td) AS login_count_td,         -- 累計登錄次數
        MAX(login_date_last) AS login_last_date,       -- 最近登錄日期
        date('2020-01-01') AS register_date            -- 注冊日期,使用默認值
    FROM dws.dws_user_user_login_td
    WHERE k1 = date('${pdate}')  -- 取當天分區數據
    GROUP BY user_id
) t2
ON t1.user_id = t2.user_id
LEFT JOIN
(
    -- 上月RFM評分數據: 用于計算價值發展趨勢
    SELECT 
        user_id,
        recency_score + frequency_score + monetary_score AS previous_rfm_score  -- 30天前的RFM總分
    FROM ads.ads_user_value_analysis
    WHERE dt = date_sub(date('${pdate}'), 30)  -- 取30天前的數據
) t3
ON t1.user_id = t3.user_id;

ADS(Application Data Store)層是數據倉庫的最頂層,直接面向業務應用。其建設核心是以業務需求為導向,將經過清洗、轉換和匯總的數據以業務友好的方式呈現。

ADS層設計應遵循業務導向、性能優化、數據一致性、可擴展性和易用性五大原則。主要包含匯總事實表、維度表、指標表和報表表等數據模型。數據更新策略包括增量更新和全量刷新,需根據業務場景選擇。ADS層實現需要高性能存儲引擎(如Doris)和計算框架,并建立完善的數據質量控制機制。通過ADS層,企業可以實現精準營銷、會員運營、風險控制、客戶服務和產品優化等業務目標,為決策提供數據支持。

責任編輯:趙寧寧 來源: 大數據技能圈
相關推薦

2025-04-08 11:30:00

DIM數據倉庫架構

2025-04-09 10:24:36

2022-08-19 09:12:19

數據庫開發

2025-04-21 00:00:00

AI工具網站

2021-10-19 07:06:27

服務器Kubernetes集群

2014-10-14 09:49:47

Postgres數據庫

2019-04-12 10:44:39

2022-12-01 17:17:09

React開發

2021-02-23 09:06:00

MVCC版本并發

2020-07-27 07:27:03

程序員技術編碼

2018-11-15 13:43:26

華為

2023-09-26 08:07:58

2025-05-06 00:35:33

2024-01-31 13:04:00

AI數據

2023-04-26 07:27:36

ChatGPTSSLNginx

2018-12-20 09:52:05

JVM內存分配

2021-08-09 08:24:08

時間工作生活

2021-05-24 11:21:25

老板員工組織

2021-05-14 07:18:07

監控微信聊天

2023-11-03 08:37:22

AI前端
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 成人免费在线视频 | 在线日韩欧美 | 波多野结衣二区 | 欧美精品网站 | 91免费在线看 | 国产96色在线 | 日韩国产一区二区三区 | 日韩在线成人 | 亚洲欧洲精品在线 | 久久精品亚洲欧美日韩精品中文字幕 | 亚洲福利在线视频 | 亚洲视频免费在线看 | 欧美成人免费在线视频 | 91国内精品 | 一区二区在线免费播放 | 一区二区三区四区在线 | 欧美久久一级 | 国产成人一区二区 | 欧美亚洲视频在线观看 | a级大片免费观看 | 亚洲高清在线观看 | 天天综合网7799精品 | 亚洲成人一区二区三区 | 九九爱这里只有精品 | 高清18麻豆| 成人小视频在线观看 | 日韩黄 | 久久久国产精品视频 | 国产欧美精品一区二区 | 色婷婷一区二区三区四区 | 羞视频在线观看 | 国产一区二区精品在线 | 色爱综合 | 久久精品网 | 在线国产99| 亚洲午夜精品久久久久久app | 在线观看中文字幕 | 欧美日韩精品中文字幕 | 成人一区二区在线 | 国产婷婷色综合av蜜臀av | 99久久精品视频免费 |