100個Python機器學習小技巧,讓你速通ML
作者:學研君
本文分享一系列簡潔的代碼片段,涵蓋機器學習過程的各個階段,從數據準備、模型選擇,到模型評估和超參數調優。
構建機器學習模型是數據科學的關鍵環節,涉及運用算法進行數據預測或挖掘數據中的模式。
本文分享一系列簡潔的代碼片段,涵蓋機器學習過程的各個階段,從數據準備、模型選擇,到模型評估和超參數調優。這些代碼示例能幫助你使用諸如Scikit-Learn、XGBoost、CatBoost、LightGBM等庫,完成常見的機器學習任務,還包含使用Hyperopt進行超參數優化、利用SHAP值進行模型解釋等高級技術。
借助這些快速參考代碼,你可以簡化機器學習工作流程,在不同領域開發出高效的預測模型。
一、數據處理與探索
- 加載數據集:data = pd.read_csv('dataset.csv')
- 探索數據:data.head()、data.info()、data.describe()
- 處理缺失值:data.dropna()、data.fillna()
- 編碼分類變量:pd.get_dummies(data)
- 將數據拆分為訓練集和測試集:X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- 特征縮放:scaler = StandardScaler(),X_scaled = scaler.fit_transform(X)
二、模型初始化、訓練與評估
- 初始化模型:model = RandomForestClassifier()
- 訓練模型:model.fit(X_train, y_train)
- 進行預測:predictions = model.predict(X_test)
- 評估準確率:accuracy_score(y_test, predictions)
- 混淆矩陣:conf_matrix = confusion_matrix(y_test, predictions)
- 分類報告:class_report = classification_report(y_test, predictions)
- 交叉驗證:cv_scores = cross_val_score(model, X, y, cv=5)
- 超參數調優:grid_search = GridSearchCV(model, param_grid, cv=5),grid_search.fit(X, y)
- 特征重要性:feature_importance = model.feature_importances_
- 保存模型:joblib.dump(model,'model.pkl')
- 加載模型:loaded_model = joblib.load('model.pkl')
三、降維和聚類
- 主成分分析:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
- 降維:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
- K均值聚類:kmeans = KMeans(n_clusters=3),kmeans.fit(X),labels = kmeans.labels_
- 手肘法:Sum_of_squared_distances = [],for k in range(1,11): kmeans = KMeans(n_clusters=k),kmeans.fit(X),Sum_of_squared_distances.append(kmeans.inertia_)
- 輪廓系數:silhouette_avg = silhouette_score(X, labels)
四、各類分類模型
- 決策樹:dt_model = DecisionTreeClassifier(),dt_model.fit(X_train, y_train)
- 支持向量機:svm_model = SVC(),svm_model.fit(X_train, y_train)
- 樸素貝葉斯:nb_model = GaussianNB(),nb_model.fit(X_train, y_train)
- K近鄰分類:knn_model = KNeighborsClassifier(),knn_model.fit(X_train, y_train)
- 近鄰回歸:KNeighborsRegressor(n_neighbors=5).fit(X_train, y_train)
- 邏輯回歸:logreg_model = LogisticRegression(),logreg_model.fit(X_train, y_train)
- 嶺回歸:ridge_model = Ridge(),ridge_model.fit(X_train, y_train)
- 套索回歸:lasso_model = Lasso(),lasso_model.fit(X_train, y_train)
- 集成方法:ensemble_model = VotingClassifier(estimators=[('clf1', clf1), ('clf2', clf2)], voting='soft'),ensemble_model.fit(X_train, y_train)
- 裝袋法:bagging_model = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=100),bagging_model.fit(X_train, y_train)
- 隨機森林:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
- 梯度提升:gb_model = GradientBoostingClassifier(),gb_model.fit(X_train, y_train)
- AdaBoost:adaboost_model = AdaBoostClassifier(),adaboost_model.fit(X_train, y_train)
- XGBoost:xgb_model = xgb.XGBClassifier(),xgb_model.fit(X_train, y_train)
- LightGBM:lgb_model = lgb.LGBMClassifier(),lgb_model.fit(X_train, y_train)
- CatBoost:catboost_model = CatBoostClassifier(),catboost_model.fit(X_train, y_train)
五、模型評估指標
- ROC曲線:fpr, tpr, thresholds = roc_curve(y_test, predictions_prob[:,1])
- ROC曲線下面積:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
- 精確率 - 召回率曲線:precision, recall, thresholds = precision_recall_curve(y_test, predictions_prob[:,1])
- 精確率 - 召回率曲線下面積:pr_auc = auc(recall, precision)
- F1分數:f1 = f1_score(y_test, predictions)
- 受試者工作特征曲線AUC:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
- 均方誤差:mse = mean_squared_error(y_test, predictions)
- 決定系數(R2):r2 = r2_score(y_test, predictions)
六、交叉驗證和采樣技術
- 分層采樣:stratified_kfold = StratifiedKFold(n_splits=5)
- 時間序列分割:time_series_split = TimeSeriesSplit(n_splits=5)
- 重采樣(欠采樣):rus = RandomUnderSampler(),X_resampled, y_resampled = rus.fit_resample(X, y)
- 重采樣(過采樣):ros = RandomOverSampler(),X_resampled, y_resampled = ros.fit_resample(X, y)
- SMOTE(合成少數過采樣技術):smote = SMOTE(),X_resampled, y_resampled = smote.fit_resample(X, y)
- 類別權重:class_weight='balanced'
- 交叉驗證中的分層采樣:stratified_cv = StratifiedKFold(n_splits=5)
七、特征工程與轉換
- 學習曲線:plot_learning_curve(model, X, y)
- 驗證曲線:plot_validation_curve(model, X, y, param_name='param', param_range=param_range)
- 提前停止(以XGBoost為例):early_stopping_rounds=10
- 特征縮放:scaler = MinMaxScaler(feature_range=(0, 1)),X_scaled = scaler.fit_transform(X)
- 獨熱編碼:data_encoded = pd.get_dummies(data)
- 標簽編碼:label_encoder = LabelEncoder(),data['label_encoded'] = label_encoder.fit_transform(data['label'])
- 數據歸一化:scaler = StandardScaler(),X_normalized = scaler.fit_transform(X)
- 數據標準化:scaler = MinMaxScaler(),X_standardized = scaler.fit_transform(X)
- 數據變換:X_transformed = np.log1p(data)
- 異常值檢測:iso_forest = IsolationForest(),outliers = iso_forest.fit_predict(X)
- 異常檢測:envelope = EllipticEnvelope(contamination=0.01),outliers = envelope.fit_predict(X)
- 數據插補:imputer = SimpleImputer(strategy='mean'),X_imputed = imputer.fit_transform(X)
- 多項式回歸:poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)
八、回歸模型與技術
- L1正則化:lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
- L2正則化:ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
- Huber回歸:huber = HuberRegressor(),huber.fit(X_train, y_train)
- 分位數回歸:quantile_reg = QuantReg(y_train, X_train),quantile_result = quantile_reg.fit(q=0.5)
- 穩健回歸:ransac = RANSACRegressor(),ransac.fit(X_train, y_train)
九、自動化機器學習和高級技術
- 使用TPOT進行自動化機器學習:tpot = TPOTClassifier(),tpot.fit(X_train, y_train)
- 使用H2O進行自動化機器學習:h2o_automl = H2OAutoML(max_models=10, seed=1),h2o_automl.train(x=X_train.columns, y='target', training_frame=train)
十、繪圖與可視化
- 保存繪圖:plt.savefig('plot.png')
- 繪制特征重要性圖:plot_feature_importance(model)
- K均值聚類可視化:plt.scatter(X[:, 0], X[:, 1], c=KMeans(n_clusters=3).fit_predict(X), cmap='viridis')
十一、其他
- 交叉驗證預測:cv_predictions = cross_val_predict(model, X, y, cv=5)
- 自定義評估指標:custom_metric = custom_metric(y_true, y_pred)
- 使用scikit-learn進行特征選擇:kbest = SelectKBest(chi2, k=5),X_selected = kbest.fit_transform(X, y)
- 帶交叉驗證的遞歸特征消除:rfecv = RFECV(estimator=DecisionTreeClassifier(), step=1, cv=5),X_rfecv = rfecv.fit_transform(X, y)
- 多項式回歸次數:poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)
- 處理類別不平衡問題:class_weight='balanced'
- AdaBoost中的學習率:learning_rate=0.1
- 用于確保可重復性的隨機種子:random_state=42
- 嶺回歸的alpha參數:ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
- 套索回歸的alpha參數:lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
- 決策樹的最大深度:dt_model = DecisionTreeClassifier(max_depth=3),dt_model.fit(X_train, y_train)
- K近鄰的參數:knn_model = KNeighborsClassifier(n_neighbors=5),knn_model.fit(X_train, y_train)
- 支持向量機的核參數:svm_model = SVC(kernel='rbf'),svm_model.fit(X_train, y_train)
- 隨機森林的估計器數量:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
- 梯度提升的學習率:gb_model = GradientBoostingClassifier(learning_rate=0.1),gb_model.fit(X_train, y_train)
- 使用網格搜索的Huber回歸:GridSearchCV(HuberRegressor(), {'epsilon': [1.1, 1.2, 1.3]}, cv=5).fit(X_train, y_train)
- 帶交叉驗證的嶺回歸:RidgeCV(alphas=[0.1, 1.0, 10.0], cv=5).fit(X_train, y_train)
- 模型堆疊:stacked_model = StackingClassifier(classifiers=[clf1, clf2], meta_classifier=meta_clf),stacked_model.fit(X_train, y_train)
責任編輯:武曉燕
來源:
Python學研大本營