手游行業(yè)運營數據指標觀察分析DNU/DAU
最近有幸和一些團隊在做數據分析的交流,一個現象是,基于最基本的數據指標,實際上我們并沒有深入的理解,或者說,我們并不了解數據,以及背后的用戶,使用場景等等。因此,也就造成了,在夾生的數據理解上,我們不斷還在探尋新的數據組織和加工。
前年的時候,我制定了關于游戲數據分析的一些基本指標,后來有人和我說,我們的數據指標定義和你的不一樣,你的指導意義是不夠的,不符合業(yè)務需要,比如這里我舉一個例子:
很多企業(yè)在定義日活躍用戶數(DAU)時,都會和我說,我們是按照每天登陸2次以上的用戶算作DAU,而給出的行業(yè)標準,是只要登陸過的用戶,就算是日活躍用戶。
就這個問題,我想表達的是,DAU這樣的指標,他本身代表的是業(yè)務場景,而非一個簡單粗暴的指標內容,換句話,在背后是存在一個圍繞DAU的體系和流程的。
我們可以以“轉化率”或者“金字塔”的思想來理解這個DAU,實際上,我很清楚,大家在做DAU數據時,我們有的定義是登陸兩次以上是活躍用戶,或者登陸時長超過10min,算作一個活躍用戶。但是在這個背后,我們會發(fā)現,登陸是最基本要具備的要素,有了這個要素或者場景后,剛才我們提到的登陸兩次也好,還是在線時長超過10min才是被滿足的。如果按照“轉化率”或者“金字塔”的思想來看,我們其實想知道層層過濾之后的,所謂那部分高價值用戶的比例。
從業(yè)務場景的角度分析來看,這其實是我們在研究用戶到達的好壞,而圍繞在這一點場景的核心,我們就會發(fā)現,影響到DAU的分析因素其實很多了,比如我們剛才提到了,基本的DAU定義是指,登陸游戲一次就是活躍用戶,這個過程中,如果結合我們剛才提到的轉化率思想,你會發(fā)現,DAU的轉化率關系或者金字塔結構(僅從登陸次數作為統(tǒng)計維度),是能夠發(fā)現一些問題所在的。比如用戶的游戲行為習慣,付費相關性,營銷活動刺激,舉例,間隔時間極短的兩次登陸用戶,且級別很低時,很可能是登陸存在問題,趨利用戶(即積分墻用戶)。
行業(yè)指標觀察
今天我們要分析的是和DAU相關指標,DNU,DAU,后面還會和留存率放到一起講解。
今天,我們花一些時間就只說DNU和DAU,而分析的指標就是DNU/DAU,你可以成這個指標叫做活躍度指數,當然大家喜歡叫做新增用戶占比。
且看下面的圖片:
圖片點擊可放大
這里的老玩家指的是:DAU-DNU,注:DAU-DNU與DOU是同義。
在此圖蘊藏了幾個信息:
玩家的行為習慣逐漸形成,周六成為用戶游戲的高峰時間段;
盡管這個事實,也許很多人都注意到了,但不是所有人在做周末獎勵活動時都考慮了這個因素。對比的大家可以看到在1月到2月份春節(jié)期間,行為特點則是完全不同的。
藍色區(qū)域面積,越小,則留下的老用戶(即DAU-DNU)比例就越多,相對的留存質量則會好一些。游戲的玩家自循環(huán)系統(tǒng)則逐步成立,則推廣期間的大部分玩家則在次日之后都留在了游戲中。針對這一點,在下面展開解釋。
我們將DNU/DAU的比率拿出來,做出如下圖的曲線:
可以看到,基本上這個比率維持在一個很低的比例,大概在10%-15%左右,換句話說,新增用戶的占比只有全體日活躍用戶占比的10%~15%,即使當我們游戲開始大范圍拉新推廣時,這個比例仍舊維持在10%~15%,但此種情況僅存在于游戲已經上線,且用戶的自然轉化情況比較理想的情況下。從數學的角度來看,這個比率計算的分子和分母,分別是DNU和DNU+DOU(即DAU),基本上變化幅度是同步的,當DOU足夠多的時候,DNU的新增影響是有限的。但是如果一段時間內DNU的諸多用戶不能轉化為DOU,則此比值則在不斷升高。如下圖所示:
可以看到的是,昨日的DNU中的一部分(次日留存部分)變成了,今天的老用戶(DAU-DNU),而昨日(DAU-DNU)部分則有一些轉化為今天的老用戶,同時,今天DAU中,則繼續(xù)有DNU的加入,而這一部分,也構成了明日(DAU-DNU)的一部分,在明日的DAU-DNU中,同時還有昨日DNU在明日的部分貢獻,昨日DAU-DNU在明日的貢獻。
由此,我們可以認為:
在游戲足夠吸引用戶或者流量足夠理想的情況下,隨著不斷新用戶被帶入到游戲中,游戲中DOU的比例則會越來越高,那么我們的DAU就會不斷的成長。
在游戲帶入的流量是虛假的或者游戲不足以吸引玩家時,則每天導入的DNU則會不斷的被損失掉,就變成了一次性用戶,即新增當天登陸過游戲的用戶,且此后不再登錄游戲。此時,我們會看到在隨后的一段時間(尤其是停止推廣后),DOU即老用戶的比例并沒有發(fā)生顯著的增長,這一點從DAU事看不出來的,但是我們從DOU的比例就可以看出來。此時,不需要等待幾天來看效果,推廣的第二天如果效果不佳就需要停止。
案例
從下圖我們可以看到,在大推開始,DAU的規(guī)模開始急劇增長,但是基本上是DNU的貢獻,推廣幾天的DNU/DAU平均水平在83%左右,這一點恰恰說明了,在推廣期間每一天的大量DNU并沒有在次日有效轉化為DOU,這一點,我們從DOU比較平滑的曲線就可以看到,盡管這期間我們發(fā)現DAU急劇膨脹,但是實際DOU較推廣前的漲幅則是有限,經過計算,較推廣前,DOU平均漲幅30%, 而實際此期間,DNU的平均漲幅100倍左右,而推廣結束后,DAU較推廣前漲幅了30% 左右。對比DNU約100倍流量的涌入,實際DAU和DOU的漲幅,則實在是很微弱。
總結起來看,這個指標對于游戲的粘性理解和投放效果評估,能夠起到一定的積極作用,同時,要說明的是,這個指標從長期運營的游戲來說,是評估其生命力的一個重要參照,想必用過的人是很清楚的。***奉上行業(yè)水準:
一線:<10%
二線:<20%
三線:<30%
四線:<45%
行業(yè)平均水平:28%
注:游戲上線初期的1~3天不具備參考意義。