成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

【深度學習系列】用PaddlePaddle進行車牌識別(一)

企業動態
小伙伴們,終于到了實戰部分了!今天給大家帶來的項目是用PaddlePaddle進行車牌識別。車牌識別其實屬于比較常見的圖像識別的項目了,目前也屬于比較成熟的應用,大多數老牌廠家能做到準確率99%+。

小伙伴們,終于到了實戰部分了!今天給大家帶來的項目是用PaddlePaddle進行車牌識別。車牌識別其實屬于比較常見的圖像識別的項目了,目前也屬于比較成熟的應用,大多數老牌廠家能做到準確率99%+。傳統的方法需要對圖像進行多次預處理再用機器學習的分類算法進行分類識別,然而深度學習發展起來以后,我們可以通過用CNN來進行端對端的車牌識別。任何模型的訓練都離不開數據,在車牌識別中,除了晚上能下載到的一些包含車牌的數據是不夠的,本篇文章的主要目的是教大家如何批量生成車牌。


生成車牌數據

  1.定義車牌數據所需字符

  車牌中包括省份簡稱、大寫英文字母和數字,我們首先定義需要的字符和字典,方便后面使用

 
 1 index = {"京": 0, "滬": 1, "津": 2, "渝": 3, "冀": 4, "晉": 5, "蒙": 6, "遼": 7, "吉": 8, "黑": 9, "蘇": 10, "浙": 11, "皖": 12,
 2          "閩": 13, "贛": 14, "魯": 15, "豫": 16, "鄂": 17, "湘": 18, "粵": 19, "桂": 20, "瓊": 21, "川": 22, "貴": 23, "云": 24,
 3          "藏": 25, "陜": 26, "甘": 27, "青": 28, "寧": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36,
 4          "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48,
 5          "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60,
 6          "W": 61, "X": 62, "Y": 63, "Z": 64};
 7 
 8 chars = ["京", "滬", "津", "渝", "冀", "晉", "蒙", "遼", "吉", "黑", "蘇", "浙", "皖", "閩", "贛", "魯", "豫", "鄂", "湘", "粵", "桂",
 9              "瓊", "川", "貴", "云", "藏", "陜", "甘", "青", "寧", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
10              "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
11              "Y", "Z"
12              ];

 

  2.生成中英文字符

 
 1 def GenCh(f,val):
 2     """
 3     生成中文字符
 4     """
 5     img=Image.new("RGB", (45,70),(255,255,255))
 6     draw = ImageDraw.Draw(img)
 7     draw.text((0, 3),val,(0,0,0),font=f)
 8     img =  img.resize((23,70))
 9     A = np.array(img)
10     return A
11 
12 def GenCh1(f,val):
13     """
14     生成英文字符
15     """
16     img=Image.new("RGB", (23,70),(255,255,255))
17     draw = ImageDraw.Draw(img)
18     draw.text((0, 2),val.decode('utf-8'),(0,0,0),font=f)
19     A = np.array(img)
20     return A
 

  3.對數據添加各種噪音和畸變,模糊處理

 
 1 def AddSmudginess(img, Smu):
 2     rows = r(Smu.shape[0] - 50)
 3     cols = r(Smu.shape[1] - 50)
 4     adder = Smu[rows:rows + 50, cols:cols + 50];
 5     adder = cv2.resize(adder, (50, 50));
 6     #adder = cv2.bitwise_not(adder)
 7     img = cv2.resize(img,(50,50))
 8     img = cv2.bitwise_not(img)
 9     img = cv2.bitwise_and(adder, img)
10     img = cv2.bitwise_not(img)
11     return img
12 
13 
14 def rot(img,angel,shape,max_angel):
15     """
16         添加放射畸變
17         img 輸入圖像
18         factor 畸變的參數
19         size 為圖片的目標尺寸
20     """
21     size_o = [shape[1],shape[0]]
22     size = (shape[1]+ int(shape[0]*cos((float(max_angel )/180) * 3.14)),shape[0])
23     interval = abs( int( sin((float(angel) /180) * 3.14)* shape[0]));
24     pts1 = np.float32([[0,0],[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]])
25     if(angel>0):
26         pts2 = np.float32([[interval,0],[0,size[1]  ],[size[0],0  ],[size[0]-interval,size_o[1]]])
27     else:
28         pts2 = np.float32([[0,0],[interval,size[1]  ],[size[0]-interval,0  ],[size[0],size_o[1]]])
29     M  = cv2.getPerspectiveTransform(pts1,pts2);
30     dst = cv2.warpPerspective(img,M,size);
31     return dst
32 
33 
34 def rotRandrom(img, factor, size):
35     """
36     添加透視畸變
37     """
38     shape = size;
39     pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
40     pts2 = np.float32([[r(factor), r(factor)], [ r(factor), shape[0] - r(factor)], [shape[1] - r(factor),  r(factor)],
41                        [shape[1] - r(factor), shape[0] - r(factor)]])
42     M = cv2.getPerspectiveTransform(pts1, pts2);
43     dst = cv2.warpPerspective(img, M, size);
44     return dst
45 
46 def tfactor(img):
47     """
48     添加飽和度光照的噪聲
49     """
50     hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV);
51     hsv[:,:,0] = hsv[:,:,0]*(0.8+ np.random.random()*0.2);
52     hsv[:,:,1] = hsv[:,:,1]*(0.3+ np.random.random()*0.7);
53     hsv[:,:,2] = hsv[:,:,2]*(0.2+ np.random.random()*0.8);
54 
55     img = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR);
56     return img
57 
58 def random_envirment(img,data_set):
59     """
60     添加自然環境的噪聲
61     """
62     index=r(len(data_set))
63     env = cv2.imread(data_set[index])
64     env = cv2.resize(env,(img.shape[1],img.shape[0]))
65     bak = (img==0);
66     bak = bak.astype(np.uint8)*255;
67     inv = cv2.bitwise_and(bak,env)
68     img = cv2.bitwise_or(inv,img)
69     return img
70 
71 def AddGauss(img, level):
72     """
73     添加高斯模糊
74     """
75     return cv2.blur(img, (level * 2 + 1, level * 2 + 1));
76 
77 def r(val):
78     return int(np.random.random() * val)
79 
80 def AddNoiseSingleChannel(single):
81     """
82     添加高斯噪聲
83     """
84     diff = 255-single.max();
85     noise = np.random.normal(0,1+r(6),single.shape);
86     noise = (noise - noise.min())/(noise.max()-noise.min())
87     noise= diff*noise;
88     noise= noise.astype(np.uint8)
89     dst = single + noise
90     return dst
91 
92 def addNoise(img,sdev = 0.5,avg=10):
93     img[:,:,0] =  AddNoiseSingleChannel(img[:,:,0]);
94     img[:,:,1] =  AddNoiseSingleChannel(img[:,:,1]);
95     img[:,:,2] =  AddNoiseSingleChannel(img[:,:,2]);
96     return img

 

  4.加入背景圖片,生成車牌字符串list和label,并存為圖片格式,批量生成。

 
 1 class GenPlate:
 2 
 3     def __init__(self,fontCh,fontEng,NoPlates):
 4         self.fontC =  ImageFont.truetype(fontCh,43,0);
 5         self.fontE =  ImageFont.truetype(fontEng,60,0);
 6         self.img=np.array(Image.new("RGB", (226,70),(255,255,255)))
 7         self.bg  = cv2.resize(cv2.imread("./images/template.bmp"),(226,70));
 8         self.smu = cv2.imread("./images/smu2.jpg");
 9         self.noplates_path = [];
10         for parent,parent_folder,filenames in os.walk(NoPlates):
11             for filename in filenames:
12                 path = parent+"/"+filename;
13                 self.noplates_path.append(path);
14 
15 
16     def draw(self,val):
17         offset= 2 ;
18         self.img[0:70,offset+8:offset+8+23]= GenCh(self.fontC,val[0]);
19         self.img[0:70,offset+8+23+6:offset+8+23+6+23]= GenCh1(self.fontE,val[1]);
20         for i in range(5):
21             base = offset+8+23+6+23+17 +i*23 + i*6 ;
22             self.img[0:70, base  : base+23]= GenCh1(self.fontE,val[i+2]);
23         return self.img
24     
25     def generate(self,text):
26         if len(text) == 9:
27             fg = self.draw(text.decode(encoding="utf-8"));
28             fg = cv2.bitwise_not(fg);
29             com = cv2.bitwise_or(fg,self.bg);
30             com = rot(com,r(60)-30,com.shape,30);
31             com = rotRandrom(com,10,(com.shape[1],com.shape[0]));
32             com = tfactor(com)
33             com = random_envirment(com,self.noplates_path);
34             com = AddGauss(com, 1+r(4));
35             com = addNoise(com);
36             return com
37 
38     def genPlateString(self,pos,val):
39         '''
40     生成車牌String,存為圖片
41         生成車牌list,存為label
42         '''
43         plateStr = "";
44         plateList=[]
45         box = [0,0,0,0,0,0,0];
46         if(pos!=-1):
47             box[pos]=1;
48         for unit,cpos in zip(box,range(len(box))):
49             if unit == 1:
50                 plateStr += val
51                 #print plateStr
52                 plateList.append(val)
53             else:
54                 if cpos == 0:
55                     plateStr += chars[r(31)]
56                     plateList.append(plateStr)
57                 elif cpos == 1:
58                     plateStr += chars[41+r(24)]
59                     plateList.append(plateStr)
60                 else:
61                     plateStr += chars[31 + r(34)]
62                     plateList.append(plateStr)
63         plate = [plateList[0]]
64         b = [plateList[i][-1] for i in range(len(plateList))]
65         plate.extend(b[1:7])
66         return plateStr,plate
67 
68     # 將生成的車牌圖片寫入文件夾,對應的label寫入label.txt
69     def genBatch(self, batchSize,pos,charRange, outputPath,size):
70         if (not os.path.exists(outputPath)):
71             os.mkdir(outputPath)
72     outfile = open('label.txt','w')
73         for i in xrange(batchSize):
74                 plateStr,plate = G.genPlateString(-1,-1)
75                 print plateStr,plate
76         img =  G.generate(plateStr);
77                 img = cv2.resize(img,size);
78                 cv2.imwrite(outputPath + "/" + str(i).zfill(2) + ".jpg", img);
79         outfile.write(str(plate)+"\n")
80 G = GenPlate("./font/platech.ttf",'./font/platechar.ttf',"./NoPlates")
 

  完整代碼:

[[223827]] View Code

  運行時加生成數量和保存路徑即可,如:

 1 python genPlate.py 100 ./plate_100 

  顯示結果:

 

  上圖即為生成的車牌數據,有清晰的有模糊的,有比較方正的,也有一些比較傾斜,生成完大量的車牌樣張后就可以進行車牌識別了。下一小節將會講如何用端對端的CNN進行車牌識別,不需要通過傳統的ocr先對字符進行分割處理后再識別。

 

參考資料:

1.原來做的車牌識別項目:https://github.com/huxiaoman7/mxnet-cnn-plate-recognition 

責任編輯:張燕妮 來源: www.cnblogs.com
相關推薦

2018-04-09 10:20:32

深度學習

2018-04-02 10:45:11

深度學習PaddlePaddl手寫數字識別

2018-04-04 10:19:32

深度學習

2018-03-26 20:07:25

深度學習

2018-04-16 11:30:32

深度學習

2018-04-17 09:40:22

深度學習

2018-04-11 09:30:41

深度學習

2018-03-26 20:00:32

深度學習

2018-03-26 21:26:50

深度學習

2018-03-26 21:31:30

深度學習

2018-03-26 19:56:13

深度學習

2021-02-03 13:56:09

KerasAPI深度學習

2018-04-18 09:39:07

深度學習

2017-10-17 15:44:53

一體機

2017-08-10 15:31:57

Apache Spar TensorFlow

2018-02-07 16:13:00

深度學習

2018-03-09 22:56:52

PaddlePaddl

2017-09-15 18:13:57

機器學習深度學習語音識別

2017-02-09 16:39:54

百度

2018-03-26 20:12:42

深度學習
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产亚洲人成a在线v网站 | 欧美日韩中文字幕在线播放 | av先锋资源 | 在线中文视频 | 久久精品天堂 | 欧美性a视频 | 国产乱xxav | 国产精品美女久久久 | 一区二区三区四区免费观看 | 日本一区二区三区精品视频 | 日韩在线观看网站 | 自拍中文字幕 | 一级a性色生活片久久毛片波多野 | 亚洲国产成人av好男人在线观看 | 欧美九九 | 日本一道本视频 | 久久久精 | 精品视频在线观看 | 久久99国产精品 | 91在线第一页 | 中文字幕av第一页 | 亚洲精品无 | 久久国产精品视频免费看 | 日韩在线观看网站 | 欧美午夜影院 | 风间由美一区二区三区在线观看 | 欧美黄色小视频 | 国产精品夜间视频香蕉 | 日韩成人一区 | 亚洲精品成人 | 特黄小视频 | 中文字幕一二三 | 黄网站免费在线看 | 麻豆久久久久久久久久 | 欧美中文在线 | 免费观看成人鲁鲁鲁鲁鲁视频 | 五月综合激情婷婷 | 日韩一级二级片 | 日韩精品一区二区三区免费观看 | 欧美a级成人淫片免费看 | 亚洲成人高清 |