數據挖掘領域十大經典算法之—CART算法(附代碼)
簡介
CART與C4.5類似,是決策樹算法的一種。此外,常見的決策樹算法還有ID3,這三者的不同之處在于特征的劃分:
- ID3:特征劃分基于信息增益
- C4.5:特征劃分基于信息增益比
- CART:特征劃分基于基尼指數
基本思想
CART假設決策樹是二叉樹,內部結點特征的取值為“是”和“否”,左分支是取值為“是”的分支,右分支是取值為“否”的分支。這樣的決策樹等價于遞歸地二分每個特征,將輸入空間即特征空間劃分為有限個單元,并在這些單元上確定預測的概率分布,也就是在輸入給定的條件下輸出的條件概率分布。
CART算法由以下兩步組成:
- 決策樹生成:基于訓練數據集生成決策樹,生成的決策樹要盡量大;
- 決策樹剪枝:用驗證數據集對已生成的樹進行剪枝并選擇最優子樹,這時損失函數最小作為剪枝的標準。
CART決策樹的生成就是遞歸地構建二叉決策樹的過程。CART決策樹既可以用于分類也可以用于回歸。本文我們僅討論用于分類的CART。對分類樹而言,CART用Gini系數最小化準則來進行特征選擇,生成二叉樹。 CART生成算法如下:
- 輸入:訓練數據集D,停止計算的條件:
- 輸出:CART決策樹。
根據訓練數據集,從根結點開始,遞歸地對每個結點進行以下操作,構建二叉決策樹:
設結點的訓練數據集為D,計算現有特征對該數據集的Gini系數。此時,對每一個特征A,對其可能取的每個值a,根據樣本點對A=a的測試為“是”或 “否”將D分割成D1和D2兩部分,計算A=a時的Gini系數。
在所有可能的特征A以及它們所有可能的切分點a中,選擇Gini系數最小的特征及其對應的切分點作為最優特征與最優切分點。依最優特征與最優切分點,從現結點生成兩個子結點,將訓練數據集依特征分配到兩個子結點中去。
對兩個子結點遞歸地調用步驟l~2,直至滿足停止條件。
生成CART決策樹。
算法停止計算的條件是結點中的樣本個數小于預定閾值,或樣本集的Gini系數小于預定閾值(樣本基本屬于同一類),或者沒有更多特征。
代碼
代碼已在github上實現(調用sklearn),這里也貼出來
測試數據集為MNIST數據集,獲取地址為train.csv
運行結果