成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

Python數據分析必知必會:TGI指數

開發 后端 數據分析
經常有一些專業的數據分析報告,會提到TGI指數,例如“基于某某TGI指數,我們發現某類用戶更偏好XX”。對于不熟悉TGI定義的同學,看到類似的話一定是云山霧罩。這次,我們就來聊一聊什么是TGI指數以及怎么樣結合案例數據實現簡單的TGI偏好分析。

這是Python數據分析實戰的第一個案例,詳細解讀TGI指數,并用Python代碼實現基礎的TGI偏好分析。

經常有一些專業的數據分析報告,會提到TGI指數,例如“基于某某TGI指數,我們發現某類用戶更偏好XX”。對于不熟悉TGI定義的同學,看到類似的話一定是云山霧罩。這次,我們就來聊一聊什么是TGI指數以及怎么樣結合案例數據實現簡單的TGI偏好分析。

內事不決網上搜,對于TGI指數,百科是這樣解釋的——TGI指數,全稱Target Group Index,可以反映目標群體在特定研究范圍內強勢或者弱勢。

很好,這個解釋官方中透漏著專業,專業中彌漫著晦澀,晦澀的讓人似懂非懂。粗暴翻譯下來,TGI指數是反應偏好的一種指標。這樣還是不夠清楚,我們結合公式理解一下。

TGI指數計算公式 = 目標群體中具有某一特征的群體所占比例 / 總體中具有相同特征的群體所占比例 * 標準數100

是不是更暈了?暈就對了!不暈我們還聊啥呢?

01 指標拆解

TGI計算公式中,有三個關鍵點需要進一步拆解:某一特征,總體,目標群體。

隨便舉個栗子,假設我們要研究A公司脫發TGI指數:

某一特征,就是我們想要分析的某種行為或者狀態,這里是脫發(或者說受脫發困擾)

總體,是我們研究的所有對象,即A公司所有人

目標群體,是總體中我們感興趣的一個分組,假設我們關注的分組是數據部,那目標群體就是數據部

于是乎,公式中分子“目標群體中具有某一特征的群體所占比例”可以理解為“數據部脫發人數占數據部的比例”,假設數據部有15個人,有9個人受脫發困擾,那數據部脫發人數占比就是9/15,等于60%。

而分母“總體中具有相同特征的群體所占比例”,等同于“全公司受脫發困擾人數占公司總人數的比例”,假設公司一共500人,有120人受脫發困擾,那這個比例是24%。

所以,數據部脫發TGI指數,可以用60% / 24% * 100 = 250,其他部門脫發TGI指數計算邏輯是一樣的,用本部門脫發人數占比 / 公司脫發人數占比 * 100即可。

TGI指數大于100,代表著某類用戶更具有相應的傾向或者偏好,數值越大則傾向和偏好越強;小于100,則說明該類用戶相關傾向較弱(和平均相比);而等于100則表示在平均水平。

剛才的例子中,我們瞎掰的數據部脫發TGI指數是250,遠遠高于100,看來搞數據的脫發風險極高,數據才是真正的發際線推手。 

[[281436]]

下面,我們通過一個案例來鞏固概念理解,順便和潘大師(Pandas)過過招。

02 TGI實例分析

項目背景

BOSS拋來一份訂單明細,“小Z啊,我們最近要推出一款客單比較高的產品,打算在一些城市先試銷,你看看這個數據,哪些城市的人有高客單偏好,幫我篩選5個吧”。

小Z趕緊打開表格,看看數據到底長什么樣子: 

Python數據分析必知必會——TGI指數

訂單數據包括品牌名、買家姓名、付款時間、訂單狀態和地域等字段,一共28832條數據,沒有空值。

粗略看了幾眼源數據,小Z趕緊明確數據需求:“領導,那客單比較高的定義是什么?”

“就我們產品線和歷史數據來看,單次購買大于50元就算高客單的客戶了”。

確認了高客單之后,我們的目標非常明確:按照高客單偏好給城市做個排序。這里的偏好,可以用TGI指數來衡量,我們再次復習下TGI三個核心點:

  • 特征,高客單,即客戶單次購買超過50元
  • 目標群體,就是各個城市,這里我們可以分別計算出所有城市客戶的高客單偏好
  • 至于總體,就非常直白了,計算所涉及到的所有客戶即為總體

解題的關鍵在于,計算出不同城市,高客單人數及所占的比例。

單個用戶打標

第一步,我們先判斷每個用戶是否屬于高客單的人群,所以先按用戶昵稱進行分組,看每位用戶的平均支付金額。這里用平均,是因為有的客戶多次購買,而每次下單金額也不一樣,故平均之。 

Python數據分析必知必會——TGI指數

接著,定義一個判斷函數,如果單個用戶平均支付金額大于50,就打上“高客單”的類別,否則為低客單,再用apply函數調用: 

Python數據分析必知必會——TGI指數

到這里基于高低客單的用戶初步打標已經完成。

匹配城市

單個用戶的金額和客單標簽已經搞定,下一步就是補充每個用戶的地域字段,一句pd.merge函數就能搞定。由于源數據是未去重的,我們得先按昵稱去重,不然匹配的結果會有許多重復的數據: 

Python數據分析必知必會——TGI指數

高客單TGI指數計算

要計算每個城市高客單TGI指數,需要得到每個城市高客單、低客單的人數分別是多少。如果用EXCEL的數據透視表處理起來就很簡單,直接把省份和城市拖拽到行的位置,客單類別拖到列的位置,值隨便選一個字段,只要是統計就好。

不要慌,這一套操作,Python實現起來也灰常容易,pivot_table透視表函數一行就搞定: 

Python數據分析必知必會——TGI指數

這樣得到的結果包含了層次化索引,受篇幅限制就不展開講,我們只要知道要索引得到“高客單”列,需要先索引“買家昵稱”,再索引“高客單”: 

Python數據分析必知必會——TGI指數

這樣,拿到了每個省市的高客單人數,然后再拿到低客單的人數,進行橫向合并: 

Python數據分析必知必會——TGI指數

我們再看看每個城市總人數以及高客單人數占比,來完成“目標群體中具有某一特征的群體所占比例”這個分子的計算: 

Python數據分析必知必會——TGI指數

有些非常小眾的城市,高客單或者低客單人數等于1甚至沒有,而這些值尤其是空值會影響結果的計算,我們要提前檢核數據: 

Python數據分析必知必會——TGI指數

果然,高客單和低客單都有空值(可以理解為0),從而導致總人數也存在空值,而TGI指數對于空值來說意義不大,所以我們剔除掉存在空值的行: 

Python數據分析必知必會——TGI指數

接著統計總人數中,高客單人群的比例,來對標公式中的分母“總體中具有相同特征的群體所占比例”: 

Python數據分析必知必會——TGI指數

最后一步,就是TGI指數的計算,順便排個序: 

Python數據分析必知必會——TGI指數

出了結果,小Z興致勃勃的打算第一時間報告老板,說時遲那時快,在按下回車之前又掃了一眼數據,發現了一個嚴重的問題:高客單TGI指數排名靠前的城市,總客戶數幾乎不超過10人,這樣的高客單人口占比,完全沒有說服力。

TGI指數能夠顯示偏好的強弱,但很容易讓人忽略具體的樣本量大小,這個是需要格外注意的。

怎么辦呢?為了加強數據整體的信度,小Z決定先對總人數進行篩選,用總人數的平均值作為閾值,只保留總人數大于平均值的城市: 

Python數據分析必知必會——TGI指數

處理之后,小Z覺得這份數據合理多了。

 

責任編輯:未麗燕 來源: 今日頭條
相關推薦

2024-01-09 13:58:22

PandasPython數據分析

2021-06-09 11:06:00

數據分析Excel

2018-03-28 14:33:33

數據分析師工具Spark

2020-07-10 07:58:14

Linux

2022-08-19 10:31:32

Kafka大數據

2024-11-15 11:11:48

2017-07-12 15:32:12

大數據大數據技術Python

2024-01-03 07:56:50

2022-05-18 09:01:19

JSONJavaScript

2023-04-20 14:31:20

Python開發教程

2023-05-08 15:25:19

Python編程語言編碼技巧

2021-04-15 10:01:18

Sqlite數據庫數據庫知識

2020-08-23 18:18:27

Python列表數據結構

2021-04-12 10:00:47

Sqlite數據庫CMD

2022-04-25 21:40:54

數據建模

2021-03-11 15:35:40

大數據數據分析

2023-11-15 18:03:11

Python數據分析基本工具

2015-10-20 09:46:33

HTTP網絡協議

2019-01-30 14:14:16

LinuxUNIX操作系統

2018-10-26 14:10:21

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产麻豆一区二区三区 | 日韩精彩视频 | a毛片| 国产精品69毛片高清亚洲 | 欧美三级三级三级爽爽爽 | 久草网站| 久亚州在线播放 | 粉嫩一区二区三区四区公司1 | 热久久久 | 久久精品亚洲 | 中文字字幕在线中文乱码范文 | 欧美在线视频a | 成人av网站在线观看 | 久久精品国产一区二区电影 | 国产精品视频在线播放 | 99国产视频 | 中文字幕的av | 国产传媒在线播放 | 国产清纯白嫩初高生在线播放视频 | 夜夜夜操 | 国产精品18hdxxxⅹ在线 | 亚洲精品久久久久久久久久久久久 | 91资源在线观看 | 日韩精品1区2区3区 国产精品国产成人国产三级 | 99热激情 | 久久久高清 | 国产免费一区二区 | 国产三区四区 | 亚洲成a人片 | 国产精品高潮呻吟久久av黑人 | 日韩久久综合网 | 久久综合av | 国产成人精品视频在线观看 | 91精品在线播放 | 欧美二区三区 | 成人av一区| 国产精品福利网 | 日本中文字幕日韩精品免费 | 69xxx免费| 超碰在线97国产 | 一区二区三区免费 |