成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

2019 年人工智能行業又進入冬天了嗎?這里我想講三個故事

人工智能
人工智能,其實東西是好東西,技術也是好技術,但炒起來就要回落,沒什么可意外的這是合理的回調,不是寒冬。

故事1:從「預測模型」到「數據可視化」,regression?

我們團隊是做數據科學咨詢的(data analytics consulting),我們一般會跟客戶說:“我們幫你做個“人工智能”模型(其實只是簡單的預測模型),一年可以給你省xxx多少錢,增長xxx用戶。”當然,我們會把這種項目包裝為科技轉型(technology transformation),告訴客戶不升級你就要被時代拋棄了,好讓他們買單。這種項目一直都很好賣,尤其是2017年前。各大咨詢公司的套路都差不多,從學校拉幾個畢業的碩博生,做好PPT(一般咨詢公司的PPT中有一頁是介紹團隊),“編”幾個成功案例,去了一般都能順利把案子簽下來。但說到底就是做幾個簡單的模型(一般就是邏輯回歸、決策樹和一些傳統的統計模型),而這種三四個月左右的項目往往能要到100萬美金(大概是4-6個咨詢師的錢),顯然利潤是很豐厚的。那時客戶非常依賴我們的專業,因為它們內部的確沒有這個方向的人才。而且當新概念起來的時候,每個公司都想嘗嘗鮮。但從17年后大部分(包括傳統行業比如連鎖超市、加油站)都基本有了自己的數據團隊,他們不再那么相信我們包裝的很好的預測模型了。原因很簡單:一是大部分咨詢產品的質量不高,二是與其付錢給外人還不如自己組建團隊(人力成本其實在逐漸下降)。

[[283504]]

企業變精明了。想要賣出大型人工智能項目越來越難,不少咨詢公司也從賣人工智能咨詢退回到了賣廉價的Dashboard(可視化)產品。現在想賣預測模型,必須先做出Proof of Concept (PoC),也就是驗證這個概念是可行的,讓客戶感覺到這東西可能有用,不然免談。然而做出靠譜的PoC基本就相當于做完了整個項目,這是個悖論。以咨詢公司為縮影,我們16年招了10多個數據方向的畢業生,而2017和2018年都沒招人全都是內部轉崗過來的,今年年初留了一個實習生轉正。而16年進來的人也只有不到三分之一還未跳槽,其實大家這幾年都沒做到真正的人工智能,只不過是在大量的在做數據可視化(如Tableau)罷了,偶有零星的項目。

 

故事二:從「稀缺」到「過?!?,再到?

不可否認的是,初級從業者補給量已經大幅增加,來源包括:各種速成的一年制碩士(國外有很多12個月或者16個月的碩士項目),自學轉行的人,培訓班畢業生。熟悉我的人應該記得,我的回答是從17年初的勸進->轉向17年底的謹慎勸退->直到18年初的勸精。我們都知道系統是存在滯后性的,所以當人們知道一個行業上升時都會大量涌入,直到過剩。從面試角度的一個直接感受是,很多人的履歷都很不錯,但基礎一般都不穩,喜歡談大方向不喜歡做細節。我有幾個同事非常喜歡提深度學習解決方案,可我們公司其實連GPU都沒有多少。

這個現象大概是很多企業的共同現象。仔細回想一下,在多少公司郵件里面大家都是凡事必提「機器學習」、「人工智能」、「深度學習」?這個現象在新進入行業的從業者身上更加明顯,凡事都想用最復雜的模型來捍衛自己的稀缺性,導致很多項目做到流產

這也不是倒退,而是一種篩選。

故事三:從「科研」到「商業化」,fill the gap?

研究和應用之間的割裂依然存在。商業化科研成果很難,同時面臨內外的壓力。從去年九月到現在和實習小同學一起寫了三篇論文,一篇理論和兩篇應用。作為一個快要畢業的研究生,他對于研究的幻想是坐在那里刷刷的列公式或者做大量的代碼,而現實情況是:想點子一周,做實驗一周,寫文章一周,修改包裝一周。他后來才意識到寫文章其實是一個銷售工作,大部分文章考慮的都是“可發表性”而不是“實用性”。而他幻想的通過科研來反哺團隊也沒那么容易,真的想要走到商業化不容易。我們也嘗試把以前寫的一些文章做成項目賣給客戶,但往往在內部就過不了第一關,因為大家對于問題的理解不在一個層面上,而且這是在分其他團隊的蛋糕,所以一般走不到客戶那一步計劃就夭折了。比如我們想把一個全新的預測模型(預測公司財務表現)賣給某金融客戶,那么得由內部的金融方向團隊(和客戶有交情)從中引薦。但基本在這一步就死掉了,因為沒有人愿意被替代,即使一起分蛋糕都不行。各大公司其實或多或少都有這個問題,研究團隊(尤其是基礎研究)往往與工程團隊和銷售團隊之間關系不好。這在技術領域,尤其是人工智能領域,不算什么秘密

所以從大方向上來看,人們沒那么容易被忽悠了。這技術能做什么,做到什么程度,大家心里都有數,所以故事越來越難講了,錢也越來越難“騙”了。再加上大量從業者涌入這個行業,甚至包括很多基礎不夠扎實的人,導致大眾對于這項技術的效果有了一定的懷疑。同時企業也慢慢認識到了底層研究很難帶來直接利益,因此就會戰略性的裁撤沒有必要的研究部門。這導致了就業市場看起來是雙向收緊:即初級和高級崗位的需求及收入都下降了,尤其是落地難度比較高的方向。再加上全球經濟環境的周期性變化,前景看起來讓人擔心。

其實東西是好東西,技術也是好技術,但炒起來就要回落,沒什么可意外的這是合理的回調,不是寒冬。而回調期該做什么?我認為:(1)培養自己的專長,給自己一個標簽,即別人提到你就會立馬想到的那項技能。有志向的人可以回到學校再去重造一下也不錯。(2)調整心理預期,拋棄幻想接地氣,明白解決問題才是硬道理。拋棄模型崇拜,不要凡事都唯新技術是舉?,F實和學術之間除了聯系以外,還有很大的路要走。(3)踏實一點,再踏實一點......

*注:本文僅以特定行業進行觀察,而人工智能領域廣大無邊,切勿以偏概全。

責任編輯:未麗燕 來源: 今日頭條
相關推薦

2021-12-31 19:40:56

人工智能AI

2023-01-13 13:11:44

人工智能模型機器學習

2021-03-02 11:35:02

人工智能計算機網絡

2019-02-14 15:20:49

2025-01-22 13:47:26

2019-02-18 15:15:41

人工智能AI開發者

2022-02-17 10:07:20

人工智能數據技術

2019-11-15 15:00:35

人工智能AI

2019-06-25 15:25:36

人工智能互聯網金融

2017-08-28 14:21:20

人工智能崗位互聯網

2020-01-13 13:30:23

人工智能AI量子計算

2024-07-10 14:36:10

2018-12-28 09:45:29

2021-04-10 16:09:18

人工智能AI深度學習

2018-12-09 14:35:58

人工智能預測

2017-01-04 12:27:46

2019-09-15 14:26:46

2017-11-03 12:11:12

數字化人工智能醫療

2018-07-24 16:39:47

華為云AIAI上有信仰的云

2018-07-27 11:07:08

華為云
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 亚洲天堂影院 | 欧美一区二区免费 | 欧美一区二区在线观看 | 亚洲精品一| 国产一区二区精品在线观看 | 日日夜夜精品免费视频 | 久久久久久综合 | 国内精品久久久久久 | 日韩精品一区二区三区在线观看 | 日韩精品999 | 一区二区在线 | 99精品久久 | 一区二区三区视频 | 国产欧美综合在线 | 97人人干| 国产成人综合一区二区三区 | 日本一区二区影视 | 日本免费一区二区三区 | 成年人在线播放 | 国产日韩一区二区 | 福利网站导航 | av网址在线播放 | 亚洲国产一区视频 | 成人国产一区二区三区精品麻豆 | 岛国精品 | 精品视频一区二区三区在线观看 | 九九色综合 | 日韩中文av在线 | 91精品国产91久久久久久吃药 | 中文字幕日韩欧美一区二区三区 | 一区二区不卡 | 人人干在线视频 | 91精品国产手机 | 色综合久久天天综合网 | 日韩精品一区二区不卡 | 国产精品久久久久无码av | 在线观看免费福利 | 中文一级片 | 久久久国产一区二区三区 | 91中文字幕在线观看 | 97国产精品|