成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

15分鐘=1年!當人工智能遇到材料學……

人工智能 機器學習
近日,《NPJ—計算材料》雜志上刊發了一項研究論文。該論文由美國桑迪亞國家實驗室一個實驗小組撰寫,記錄了他們開發的一種機器學習算法。

 近日,《NPJ—計算材料》雜志上刊發了一項研究論文。

該論文由美國桑迪亞國家實驗室一個實驗小組撰寫,記錄了他們開發的一種機器學習算法。

這種算法能夠以比正常速度快近4萬倍的速度為材料科學家進行模擬計算,相當于人們可以在播種三分鐘后吃下一個新鮮的西紅柿,或者在半秒鐘內從紐約飛到洛杉磯。

近幾年,人工智能助力材料學發展的研究比比皆是。

1月8日,牛津大學教授Volker L. Deringer團隊開發了一種基于第一性原理計算數據集的原子尺度精確機器學習方法。

使用更普適的、基于機器學習模型的、具有第一性原理計算精度的高斯近似勢能(Gaussian Approximation Potentials,簡稱GAP)分子動力學模擬(GAP-MD),研究者對包含10萬個硅原子(十納米尺度)系統的液體—非晶態和非晶態—非晶態轉變過程進行了研究,同時預測了其結構、穩定性和電子性質。

該方法成功地描述和解釋了與實驗觀察一致的非晶硅的全部相變過程。

這項里程碑式的成果以封面文章的形式刊登在《自然》。

[[379061]]

為什么是材料科學

中國科學院物理研究所特聘研究員劉淼更看重后一項研究成果。

他在接受《中國科學報》采訪時介紹道,GAP方法自10年前誕生后,不斷提升。

“GAP是用量子力學的方式產生大量的數據,再用這些數據構建機器學習模型,從而提升計算的效率與精度,將計算難度簡化,甚至完成之前無法完成的事情。”

劉淼解釋說,“GAP從大量密度泛函理論數據出發,提取原子間相互作用的信息,將材料計算研究對象的空間尺度放大103~104倍,時間尺度擴展103倍,且精度接近密度泛函理論計算精度。”

在該項研究中,研究人員通過仿真揭示了更廣泛范圍內硅的液態和非晶態轉變過程,為極富挑戰性實驗條件下的材料預測建模開辟了新途徑。

此外,除了硅這一特定材料,原子尺度機器學習方法還具備引領新的科學發現的能力。

由于該方法能夠獲得有關原子穩定結構、原子間相互作用等物性的精確預測,精度接近量子力學方法模擬,可被用于揭示迄今未知的諸多現象,探索介觀系統、液態系統、非晶多晶、生物等復雜體系的動力學演化過程。

而前文提到的美國桑迪亞國家實驗室的研究則建立在一個擁有128個處理核的高性能計算集群上。

研究人員在該計算集群上進行了一次單獨的、無輔助的模擬。

機器學習的情況下,同樣的模擬在使用36個核的情況下花費了60毫秒——相當于在同等的計算機上快了42000倍。

這意味著研究人員現在可以在15分鐘內完成通常需要一年時間的計算過程。

而且,一直以來,機器學習被用于快速模擬,計算原子和分子之間的相互作用如何隨時間變化。

但此次桑迪亞國家實驗室公布的結果首次展示了機器學習在相對較大的微觀尺度上加速材料模擬。

通過這種模擬,科學家可以快速模擬熔化金屬的微小液滴在冷卻和凝固時是如何聚集在一起的,或者當混合物熔化時是如何分解成的。

不僅如此,新算法得出的答案正確率也十分高,與標準模擬的結果相差5%。

“我們的機器學習框架達到了與高保真模型基本相同的精度,但計算成本很低。”參與該項目的桑迪亞材料科學家雷米·丁格維爾表示。

中國科學院深圳先進技術研究院研究員歐勇盛在解釋這項研究時談道,這是應用計算機仿真加快計算過程的嘗試,而實現這一目標的原因是材料學本身更注重實驗,換言之,實驗過程的數據計算是人工智能所擅長的領域。

“因此,材料學與人工智能之間擦出了火花。”

兩者相互影響

其實與材料學一樣注重實驗的學科很多,因此人工智能與其他學科結合的交叉學科也很多。

“近期人工智能飛速發展的動能在于算力進步,算力進步使生產、處理海量數據成為可能,進而使人工智能滲透進了各行各業。”

劉淼說,“剛好材料科學進入了數據積累快速發展期,高通量實驗和計算等一些新技術正在為材料科學領域生產大量數據,人工智能使大數據分析處理成為可能。”

“通過實驗,研究人員可以總結和歸納其中的規律,計算機算法就是計算機實驗的過程,之后計算機才能夠總結并歸納其中的規律,然后完成某項工作。例如,計算機寫詩。”歐勇盛介紹道。

2019年2月,美國國家科學院發布了針對材料研究的第三次十年調查——《材料研究前沿:十年調查》,評估了過去十年中材料研究領域的進展,確定了未來十年材料研究的機遇、挑戰和新方向。

其中,在納米材料、高熵合金等前沿材料研究領域,人工智能被寄予厚望。

機器學習方法在材料設計和材料篩選方面表現出巨大潛力,有望極大推動新型材料的發現和傳統材料的更新。

反過來,人工智能的發展也離不開材料科學的助力,智能機器人、可穿戴醫療設備、虛擬現實(VR)成像、物聯網城市系統……未來的智能傳感器需要極高的靈敏度、柔韌度、透明度和穩定性,這對材料提出了新的要求。

“人工智能與材料科學,兩者應加深交流,相互促進。”

中國科學院院士趙忠賢在2019年粵港澳大灣區科技創新論壇上提出,未來,解決人工智能使用的敏感元器件問題要靠材料科學,同時也有必要根據材料科學的需求去發展人工智能技術和理論。

先有數據再有算法

“人工智能是個雛形,可以推動很多領域進步,還需要專業人士去改造。”歐勇盛說,“現在,交叉學科是創新的原動力,人工智能作為一種工具,更需要與其他學科合作才能發揮其最大的作用。”

作為人工智能深度學習的基礎,數據的質量和數量是這一學科的關鍵。

目前,不少國家擁有自己的材料學數據庫。

“有了數據庫,人工智能方法如深度學習等才能提取數據之間的關聯和規律。”劉淼表示,“有些學科與人工智能交叉得少,就是因為數據量不夠大。”

2018年,由劉淼等人聯手正式開始創建我國材料科學數據庫Atomly,該數據庫已經在2020年8月上線。

“材料學數據庫上線后,主要影響有兩方面。”劉淼解釋說。

首先,目前大多數研究都是基于經驗指導,即研究人員會根據自己的經驗做判斷,通過實驗合成表征對材料進行試錯和驗證,而當大數據和人工智能介入后,通過數據驅動的方式進行預測,讓實驗更加有的放矢。

其次,人類個體的認知能力有限,即便是積累畢生所學,依然會遇到瓶頸,計算機則可不斷橫向擴展,無上限可言。

“2016年AlphaGo打敗了人類棋手,未來人工智能和材料科學數據庫也有望不斷進步,成為人類材料科研的好幫手。”劉淼說。

責任編輯:華軒 來源: 今日頭條
相關推薦

2018-03-23 09:14:46

人工智能云計算機器學習

2021-08-22 10:50:14

人工智能AI教育教學

2020-10-19 18:07:00

云計算技術應用

2020-12-01 16:21:06

人工智能深度學習機器學習

2019-11-27 09:47:49

算法人工智能Python

2021-04-27 13:46:17

人工智能材料機器學習

2020-12-01 10:24:48

人工智能機器學習技術

2018-10-19 12:27:23

人工智能機器學習技術

2024-03-13 11:30:58

物聯網人工智能AI

2022-06-17 08:05:28

Grafana監控儀表盤系統

2017-08-19 15:57:08

人工智能機器人投資

2018-07-26 17:07:36

人工智能中醫機器人

2018-04-12 20:19:19

無線網絡人工智能機器學習

2019-02-12 09:45:27

2022-04-02 14:34:42

人工智能手機拍照

2020-12-18 11:46:25

人工智能人工智能技術

2013-06-27 09:41:19

LuaLua語言Lua語言快速入門

2017-03-12 14:30:35

人工智能人工智障機器學習

2014-04-22 09:42:12

Bash腳本教程

2022-11-23 15:45:21

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 欧美一区二区成人 | 欧美国产视频 | 欧美精品一区二区三区在线播放 | 男人的天堂视频网站 | 中文在线观看视频 | 国产精品视频久久久久 | 99精品一区二区三区 | 香蕉一区二区 | 一区二区三区在线 | jdav视频在线观看免费 | 日本精品久久久一区二区三区 | 日韩国产精品一区二区三区 | www.日日夜夜 | 亚洲成人精品免费 | 超碰在线播 | 成人特级毛片 | 国产一区二区在线免费 | 成年人在线观看 | 欧美激情一区二区三级高清视频 | 伊人久久大香线 | 中国美女撒尿txxxxx视频 | 久久婷婷国产香蕉 | 亚洲精品天堂 | 国产成人精品一区二区三区在线 | 免费在线精品视频 | 欧美在线观看网站 | 欧美精品日韩 | 91在线看| 亚洲精品欧洲 | 久久久日韩精品一区二区三区 | 伊人精品一区二区三区 | 中文字幕亚洲区一区二 | 毛片免费视频 | 欧美黄色大片在线观看 | 欧美专区在线 | 喷潮网站 | 欧美日韩在线精品 | 青青草国产在线观看 | 成人免费一级 | 91精品久久久久久久久久入口 | 国产999精品久久久影片官网 |