Python高級篇—多線程、多進程、協程、異步編程的概念與實現
Python 的并發(fā)編程是指在程序中同時執(zhí)行多個任務的能力,以提高程序的效率和性能。常用的并發(fā)編程方式包括多線程、多進程、協程和異步編程。
多線程
多線程是指在一個進程內,同時執(zhí)行多個線程,每個線程負責執(zhí)行一個子任務。多線程可以提高程序的并發(fā)性,加速程序執(zhí)行速度。Python 提供了 threading 模塊來實現多線程編程。
下面是一個簡單的多線程示例:
import threading
def worker(num):
print(f"Thread {num} is running")
threads = []
for i in range(5):
t = threading.Thread(target=worker, args=(i,))
threads.append(t)
t.start()
輸出結果:
Thread 0 is running
Thread 1 is running
Thread 2 is running
Thread 3 is running
Thread 4 is running
多進程
多進程是指在一個程序中同時執(zhí)行多個進程,每個進程負責執(zhí)行一個子任務。多進程可以利用多核 CPU 提高程序的并發(fā)性,加速程序執(zhí)行速度。Python 提供了 multiprocessing 模塊來實現多進程編程。
下面是一個簡單的多進程示例:
import multiprocessing
def worker(num):
print(f"Process {num} is running")
processes = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
processes.append(p)
p.start()
輸出結果:
Process 0 is running
Process 1 is running
Process 2 is running
Process 3 is running
Process 4 is running
線程同步和互斥
在多線程編程中,由于多個線程同時訪問共享資源可能導致數據不一致或其他問題。因此,需要進行線程同步和互斥操作,以保證程序的正確性和可靠性。
Python 提供了多種線程同步和互斥機制,如鎖(Lock)、信號量(Semaphore)、事件(Event)等。下面是一個使用鎖實現線程同步的示例:
import threading
num = 0
lock = threading.Lock()
def worker():
global num
for i in range(100000):
with lock:
num += 1
threads = []
for i in range(5):
t = threading.Thread(target=worker)
threads.append(t)
t.start()
for t in threads:
t.join()
print(f"num = {num}")
輸出結果:
num = 500000
協程和異步編程
協程是一種輕量級的線程,可以在單線程中實現多任務的并發(fā)執(zhí)行。協程不需要線程切換的開銷,可以更高效地利用 CPU 資源。Python 提供了 asyncio 模塊來實現協程和異步編程。
下面是一個簡單的協程示例:
import asyncio
async def worker(num):
print(f"Coroutine {num} is running")
await asyncio.sleep(1)
print(f"Coroutine {num} is done")
async def main():
coroutines = [worker(i) for i in range(5)]
await asyncio.gather(*coroutines)
asyncio.run(main())
輸出結果:
Coroutine 0 is running
Coroutine 1 is running
Coroutine 2 is running
Coroutine 3 is running
Coroutine 4 is running
Coroutine 0 is done
Coroutine 1 is done
Coroutine 2 is done
Coroutine 3 is done
Coroutine 4 is done
在異步編程中,常常需要使用回調函數來處理異步操作的結果。Python 3.5 引入了 async 和 await 關鍵字,使得異步編程更加易讀易寫。下面是一個使用 async 和 await 實現異步編程的示例:
import asyncio
async def worker(num):
print(f"Task {num} is running")
await asyncio.sleep(1)
return f"Task {num} is done"
async def main():
tasks = [asyncio.create_task(worker(i)) for i in range(5)]
results = await asyncio.gather(*tasks)
for result in results:
print(result)
asyncio.run(main())
輸出結果:
Task 0 is running
Task 1 is running
Task 2 is running
Task 3 is running
Task 4 is running
Task 0 is done
Task 1 is done
Task 2 is done
Task 3 is done
Task 4 is done
總之,Python 并發(fā)編程提供了多種實現方式,開發(fā)者可以根據實際情況選擇最適合的方式來提高程序的執(zhí)行效率和并發(fā)性能。同時,在編寫并發(fā)程序時需要注意線程安全、進程間通信等問題,以保證程序的正確性和穩(wěn)定性。