成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

改進卷積神經(jīng)網(wǎng)絡(luò),你需要這14種設(shè)計模式

開發(fā) 前端
深度學(xué)習(xí)領(lǐng)域近來已經(jīng)發(fā)展出大量的新架構(gòu),而如何選擇使用這些新架構(gòu)提升卷積神經(jīng)網(wǎng)絡(luò)的性能就顯得越發(fā)重要了。機器之心之前報道過提交 ICLR 2017 的論文: 解析深度卷積神經(jīng)網(wǎng)絡(luò)的14種設(shè)計模式 也正是關(guān)注于此。而本文在描述14種設(shè)計模式之余更加注重于闡述構(gòu)建和訓(xùn)練卷積網(wǎng)絡(luò)的小技巧。

深度學(xué)習(xí)領(lǐng)域近來已經(jīng)發(fā)展出大量的新架構(gòu),而如何選擇使用這些新架構(gòu)提升卷積神經(jīng)網(wǎng)絡(luò)的性能就顯得越發(fā)重要了。機器之心之前報道過提交 ICLR 2017 的論文: 解析深度卷積神經(jīng)網(wǎng)絡(luò)的14種設(shè)計模式 也正是關(guān)注于此。而本文在描述14種設(shè)計模式之余更加注重于闡述構(gòu)建和訓(xùn)練卷積網(wǎng)絡(luò)的小技巧。

自從 2011 年深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中優(yōu)于人類開始,它們就成為了計算機視覺任務(wù)中的行業(yè)標(biāo)準,這些任務(wù)包括圖像分割、目標(biāo)檢測、場景標(biāo)記、跟蹤以及文本檢測等等。

然而,訓(xùn)練神經(jīng)網(wǎng)絡(luò)的技巧并不容易掌握。與之前的機器學(xué)習(xí)方法一樣,細節(jié)是最恐怖的地方,然而在卷積神經(jīng)網(wǎng)絡(luò)中有更多的細節(jié)需要去管理:你所用的數(shù)據(jù)和硬件的限制是什么?你應(yīng)該以哪種網(wǎng)絡(luò)作為開始呢?AlexNet、VGG、GoogLeNet 還是 ResNet 呢?甚至 ResNet 里面還有 ResNet 分支選項。你應(yīng)當(dāng)建立多少與卷積層相對應(yīng)的密集層?你使用哪種激活函數(shù)?即使你選擇了廣為流行的 ReLU,你也還要選擇是不是使用普通的 ReLU、Very Leaky ReLU、RReLU、PReLU 或通用版本的 ELU。

最難優(yōu)化的參數(shù)之一就是學(xué)習(xí)率(learning rate),它是調(diào)節(jié)神經(jīng)網(wǎng)絡(luò)訓(xùn)練的最重要的超參數(shù)。學(xué)習(xí)率太小,可能導(dǎo)致你永遠不會收斂到一個解決方案,學(xué)習(xí)率太大,可能導(dǎo)致你剛好跳過了最優(yōu)解。即便是適應(yīng)性學(xué)習(xí)率的方法,也可能在計算上過于昂貴,這取決于你的硬件資源。

設(shè)計的選擇和超參數(shù)的設(shè)定會嚴重地影響 CNN 的訓(xùn)練和表現(xiàn),然而對于剛進入深度學(xué)習(xí)領(lǐng)域的人而言,建立一種設(shè)計架構(gòu)的直覺所需要的資源是稀缺的,而且是分散的。

改進卷積神經(jīng)網(wǎng)絡(luò),你需要這14種設(shè)計模式

每個人都知道 VGG 是緩慢而龐大的,但是,倘若你正確地調(diào)節(jié)它,你仍然可以生成最先進的結(jié)果以及高性能的商用應(yīng)用。圖片來源:Canziani, et al

著重于實際調(diào)節(jié)的主要書籍是《神經(jīng)網(wǎng)絡(luò):權(quán)衡技巧(Neural Networks: Tricks Of The Trade)》,作者:Orr & Muller,最初出版于 2003 年,再版于 2012 年。關(guān)于深度學(xué)習(xí)的熱潮始于 2012 年《紐約時報》報導(dǎo)的 Geoffrey Hinton 的團隊在 Merck Drug Discovery Challenge 上的驚人成功,所以最近幾年先進的研究是缺失的。

幸運的是,美國海軍研究室的研究員 Leslie Smit 等人已經(jīng)發(fā)表了關(guān)于卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)改進和技術(shù)提升的系統(tǒng)性研究。下面列舉一些他所強調(diào)的最重要的一些設(shè)計模式。

關(guān)于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)設(shè)計模式

根據(jù) Smith 的觀點,這「14 種原創(chuàng)設(shè)計模式可以幫助沒有經(jīng)驗的研究者去嘗試將深度學(xué)習(xí)與各種新應(yīng)用相結(jié)合」。盡管高級人工智能研究員可以依靠直覺、經(jīng)驗以及針對性的實驗,但這些建議對于剩下的沒有機器學(xué)習(xí)博士學(xué)位的人來說是一個很好的起點。

1)架構(gòu)要遵循應(yīng)用

你也許會被 Google Brain 或者 DeepMind 這些奇特的實驗室所發(fā)明的那些耀眼的新模型所吸引,但是其中許多在你的用例或者業(yè)務(wù)環(huán)境中要么是不可能實現(xiàn),要么是實現(xiàn)起來非常不現(xiàn)實。你應(yīng)該使用對你的特定應(yīng)用最有意義的模型,這種模型或許比較簡單,但是仍然很強大,例如 VGG。

改進卷積神經(jīng)網(wǎng)絡(luò),你需要這14種設(shè)計模式

較新的架構(gòu)可能在學(xué)術(shù)性的基準測試上會更加準確,但是你應(yīng)該選擇你自己理解的并且最適合你的應(yīng)用的架構(gòu)。圖片來源:Canziani 等。

2)網(wǎng)絡(luò)路徑的激增

每年的 ImageNet Challenge 的冠軍都會使用比上一屆冠軍更加深層的網(wǎng)絡(luò)。從 AlexNet 到 Inception,再到 ResNet,Smith 注意到了「網(wǎng)絡(luò)中路徑數(shù)量倍增」的趨勢,并且「ResNet 可以是不同長度的網(wǎng)絡(luò)的指數(shù)集合」。

3)爭取簡單

然而,更大的并不一定是更好的。在名為「Bigger is not necessarily better」的論文中,Springenberg 等人演示了如何用更少的單元實現(xiàn)最先進的結(jié)果。參考:https://arxiv.org/pdf/1412.6806.pdf

4)增加對稱性

無論是在建筑上,還是在生物上,對稱性被認為是質(zhì)量和工藝的標(biāo)志。Smith 將 FractalNet 的優(yōu)雅歸功于網(wǎng)絡(luò)的對稱性。

5)金字塔式的形狀

你也許經(jīng)常在表征能力和減少冗余或者無用信息之間權(quán)衡。卷積神經(jīng)網(wǎng)絡(luò)通常會降低激活函數(shù)的采樣,并會增加從輸入層到最終層之間的連接通道。

6)過度訓(xùn)練

另一個權(quán)衡是訓(xùn)練準確度和泛化能力。用類似 drop-out 或者 drop-path 的方法進行正則化可以提高泛化能力,這是神經(jīng)網(wǎng)絡(luò)的重要優(yōu)勢。請在比你的實際用例更加苛刻的問題下訓(xùn)練你的網(wǎng)絡(luò),以提高泛化性能。

7)全面覆蓋問題空間

為了擴展你的訓(xùn)練數(shù)據(jù)和提升泛化能力,請使用噪聲和數(shù)據(jù)增強,例如隨機旋轉(zhuǎn)、裁剪和一些圖像操作。

8)遞增的特征構(gòu)造

隨著網(wǎng)絡(luò)結(jié)構(gòu)越來越成功,它們進一部簡化了每一層的「工作」。在非常深層的神經(jīng)網(wǎng)絡(luò)中,每一層僅僅會遞增的修改輸入。在 ResNets 中,每一層的輸出和它的輸入時很相似的,這意味著將兩層加起來就是遞增。實踐中,請在 ResNet 中使用較短的跳變長度。

9)標(biāo)準化層的輸入

標(biāo)準化是另一個可以使計算層的工作變得更加容易的方法,在實踐中被證明可以提升訓(xùn)練和準確率。批量標(biāo)準化(batch normalization)的發(fā)明者認為原因在于處理內(nèi)部的協(xié)變量,但是 Smith 認為,「標(biāo)準化把所有層的輸入樣本放在了一個平等的基礎(chǔ)上(類似于一種單位轉(zhuǎn)換),這允許反向傳播可以更有效地訓(xùn)練」。

10)輸入變換

研究表明,在 Wide ResNets 中,性能會隨著連接通道的增加而增強,但是你需要權(quán)衡訓(xùn)練代價與準確度。AlexNet、VGG、Inception 和 ResNets 都在第一層使用了輸入變換以讓輸入數(shù)據(jù)能夠以多種方式被檢查。

11)可用的資源決指引著層的寬度

然而,可供選擇的輸出數(shù)量并不是顯而易見的,這依賴于你的硬件能力以及期望的準確度。

12)Summation Joining

Summation 是一種常用的合并分支的方式。在 ResNets 中,使用總和作為連接的機制可以讓每一個分支都能計算殘差和整體近似。如果輸入跳躍連接一直存在,那么 summation 會讓每一層學(xué)到正確地東西(例如與輸入的差別)。在任何分支都可以被丟棄的網(wǎng)絡(luò)(例如 FractalNet)中,你應(yīng)該使用這種方式類保持輸出的平滑。

13)下采樣變換

在池化的時候,利用級聯(lián)連接(concatenation joining)來增加輸出的數(shù)量。當(dāng)使用大于 1 的步長時,這會同時處理連接并增加連接通道的數(shù)量。

14)用于競爭的 Maxout

Maxout 被用在你只需要選擇一個激活函數(shù)的局部競爭網(wǎng)絡(luò)中。使用求和以及平均值會包含所有的激活函數(shù),所以不同之處在于 maxout 只選擇一個「勝出者」。Maxout 的一個明顯的用例是每個分支具有不同大小的內(nèi)核,而 Maxout 可以包含尺度不變性。

提示與技巧

除了這些設(shè)計模式之外,還出現(xiàn)了幾個最新的技巧和訣竅,以減少架構(gòu)的復(fù)雜性和訓(xùn)練時間,并且可以使用有噪聲的標(biāo)簽。

1)使用調(diào)優(yōu)過的預(yù)訓(xùn)練網(wǎng)絡(luò)

「如果你的視覺數(shù)據(jù)和 ImageNet 相似,那么使用預(yù)訓(xùn)練網(wǎng)絡(luò)會幫助你學(xué)習(xí)得更快」,機器學(xué)習(xí)公司 Diffbot 的 CEO Mike Tung 解釋說。低水平的卷積神經(jīng)網(wǎng)絡(luò)通常可以被重復(fù)使用,因為它們大多能夠檢測到像線條以及邊緣這些模式。將分類層用你自己的層替換,并且用你特定的數(shù)據(jù)去訓(xùn)練最后的幾個層。

2)使用 freeze-drop-path

Drop-path 會在訓(xùn)練的迭代過程中隨機地刪除一些分支。Smith 測試了一種相反的方法,它被稱為 freeze-path,就是一些路徑的權(quán)重是固定的、不可訓(xùn)練的,而不是整體刪除。因為下一個分支比以前的分支包含更多的層,并且正確的內(nèi)容更加容易近似得到,所以網(wǎng)絡(luò)應(yīng)該會得到更好的準確度。

3)使用循環(huán)的學(xué)習(xí)率

關(guān)于學(xué)習(xí)率的實驗會消耗大量的時間,并且會讓你遇到錯誤。自適應(yīng)學(xué)習(xí)率在計算上可能是非常昂貴的,但是循環(huán)學(xué)習(xí)率不會這樣。使用循環(huán)學(xué)習(xí)率(CLR)時,你可以設(shè)置一組最大最小邊界,在邊界范圍內(nèi)改變學(xué)習(xí)率。Smith 甚至還在論文《Cyclical Learning Rates for Training Neural Networks》中提供了計算學(xué)習(xí)率的最大值和最小值的方法。參考:https://arxiv.org/pdf/1506.01186.pdf

4)在有噪聲的標(biāo)簽中使用 bootstrapping

在現(xiàn)實中,很多數(shù)據(jù)都是混亂的,標(biāo)簽都是主觀性的或者是缺失的,而且預(yù)測的對象可能是訓(xùn)練的時候未曾遇到過的。Reed 等人在文章《TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH BOOTSTRAPPING》中描述了一種給網(wǎng)絡(luò)預(yù)測目標(biāo)注入一致性的方法。直觀地講,這可以奏效,通過使網(wǎng)絡(luò)利用對環(huán)境的已知表示(隱含在參數(shù)中)來過濾可能具有不一致的訓(xùn)練標(biāo)簽的輸入數(shù)據(jù),并在訓(xùn)練時清理該數(shù)據(jù)。參考:https://arxiv.org/pdf/1412.6596

5)采用有 Maxout 的 ELU,而不是 ReLU

ELU 是 ReLU 的一個相對平滑的版本,它能加速收斂并提高準確度。與 ReLU 不同,ELU 擁有負值,允許它們以更低的計算復(fù)雜度將平均單位激活推向更加接近 0 的值,就像批量標(biāo)準化一樣參考論文《FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS)》,https://arxiv.org/pdf/1511.07289.pdf。如果您使用具有全連接層的 Maxout,它們是特別有效的。

責(zé)任編輯:未麗燕 來源: 機器之心
相關(guān)推薦

2021-05-06 08:00:00

人工智能神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)

2021-06-29 09:53:06

神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)圖形

2022-04-07 09:01:52

神經(jīng)網(wǎng)絡(luò)人工智能

2017-05-04 18:30:34

大數(shù)據(jù)卷積神經(jīng)網(wǎng)絡(luò)

2018-05-16 09:41:13

神經(jīng)網(wǎng)絡(luò)NN函數(shù)

2019-01-05 08:40:17

VGG神經(jīng)網(wǎng)絡(luò)

2022-10-11 23:35:28

神經(jīng)網(wǎng)絡(luò)VGGNetAlexNet

2018-04-08 11:20:43

深度學(xué)習(xí)

2020-03-25 09:48:10

AI芯片神經(jīng)網(wǎng)絡(luò)

2018-05-15 09:15:03

CNN卷積神經(jīng)網(wǎng)絡(luò)函數(shù)

2019-06-06 09:00:02

卷積神經(jīng)網(wǎng)絡(luò)CNNAI

2024-10-28 00:38:10

2024-11-15 13:20:02

2024-09-20 07:36:12

2017-04-26 09:30:53

卷積神經(jīng)網(wǎng)絡(luò)實戰(zhàn)

2025-02-21 08:29:07

2017-11-24 11:10:39

神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)全連接神經(jīng)網(wǎng)絡(luò)

2022-06-16 10:29:33

神經(jīng)網(wǎng)絡(luò)圖像分類算法

2024-10-05 23:00:35

2025-03-31 09:52:00

點贊
收藏

51CTO技術(shù)棧公眾號

主站蜘蛛池模板: 国产成人精品一区 | 青青草社区 | 国产欧美一区二区三区久久手机版 | 欧美一区二区三区在线 | 一呦二呦三呦国产精品 | 欧美综合一区二区 | 亚洲成av人片在线观看 | 久久久蜜臀国产一区二区 | 欧美高清视频 | 一区二区久久 | 能看的av| 国产成人叼嘿视频在线观看 | 国产美女精品视频 | 亚洲男人的天堂网站 | 97在线超碰| 日韩二三区 | 国产精品视频一区二区三区四区国 | 一区欧美| 日韩亚洲欧美综合 | 久久机热| 成人av免费 | 美女爽到呻吟久久久久 | 日韩毛片中文字幕 | 国产视频福利在线观看 | 久久国产免费 | 国产精品久久久亚洲 | 欧美精品99 | 欧美视频三区 | 国产一区免费 | 日本在线视 | 国产成人精品一区二区三区四区 | 成人乱人乱一区二区三区软件 | 成人小视频在线免费观看 | 欧美一区二区三区在线看 | 精品视频在线观看 | 欧亚av在线 | 国产在线观看一区二区三区 | 国产网站在线免费观看 | 欧美一级片在线看 | 538在线精品 | 欧美日韩成人 |