成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

從ReLU到Sinc,26種神經網絡激活函數可視化

開發 開發工具
在本文中,作者對包括 Relu、Sigmoid 在內的 26 種激活函數做了可視化,并附上了神經網絡的相關屬性,為大家了解激活函數提供了很好的資源。

在神經網絡中,激活函數決定來自給定輸入集的節點的輸出,其中非線性激活函數允許網絡復制復雜的非線性行為。正如絕大多數神經網絡借助某種形式的梯度下降進行優化,激活函數需要是可微分(或者至少是幾乎完全可微分的)。此外,復雜的激活函數也許產生一些梯度消失或爆炸的問題。因此,神經網絡傾向于部署若干個特定的激活函數(identity、sigmoid、ReLU 及其變體)。

下面是 26 個激活函數的圖示及其一階導數,圖的右側是一些與神經網絡相關的屬性。

1. Step

Step

激活函數 Step 更傾向于理論而不是實際,它模仿了生物神經元要么全有要么全無的屬性。它無法應用于神經網絡,因為其導數是 0(除了零點導數無定義以外),這意味著基于梯度的優化方法并不可行。

2. Identity

Identity

通過激活函數 Identity,節點的輸入等于輸出。它完美適合于潛在行為是線性(與線性回歸相似)的任務。當存在非線性,單獨使用該激活函數是不夠的,但它依然可以在最終輸出節點上作為激活函數用于回歸任務。

3. ReLU

ReLU

修正線性單元(Rectified linear unit,ReLU)是神經網絡中最常用的激活函數。它保留了 step 函數的生物學啟發(只有輸入超出閾值時神經元才激活),不過當輸入為正的時候,導數不為零,從而允許基于梯度的學習(盡管在 x=0 的時候,導數是未定義的)。使用這個函數能使計算變得很快,因為無論是函數還是其導數都不包含復雜的數學運算。然而,當輸入為負值的時候,ReLU 的學習速度可能會變得很慢,甚至使神經元直接無效,因為此時輸入小于零而梯度為零,從而其權重無法得到更新,在剩下的訓練過程中會一直保持靜默。

4. Sigmoid

Sigmoid

Sigmoid 因其在 logistic 回歸中的重要地位而被人熟知,值域在 0 到 1 之間。Logistic Sigmoid(或者按通常的叫法,Sigmoid)激活函數給神經網絡引進了概率的概念。它的導數是非零的,并且很容易計算(是其初始輸出的函數)。然而,在分類任務中,sigmoid 正逐漸被 Tanh 函數取代作為標準的激活函數,因為后者為奇函數(關于原點對稱)。

5. Tanh

Tanh

在分類任務中,雙曲正切函數(Tanh)逐漸取代 Sigmoid 函數作為標準的激活函數,其具有很多神經網絡所鐘愛的特征。它是完全可微分的,反對稱,對稱中心在原點。為了解決學習緩慢和/或梯度消失問題,可以使用這個函數的更加平緩的變體(log-log、softsign、symmetrical sigmoid 等等)

6. Leaky ReLU

Leaky ReLU

經典(以及廣泛使用的)ReLU 激活函數的變體,帶泄露修正線性單元(Leaky ReLU)的輸出對負值輸入有很小的坡度。由于導數總是不為零,這能減少靜默神經元的出現,允許基于梯度的學習(雖然會很慢)。

7. PReLU

PReLU

參數化修正線性單元(Parameteric Rectified Linear Unit,PReLU)屬于 ReLU 修正類激活函數的一員。它和 RReLU 以及 Leaky ReLU 有一些共同點,即為負值輸入添加了一個線性項。而最關鍵的區別是,這個線性項的斜率實際上是在模型訓練中學習到的。

8. RReLU

 RReLU

隨機帶泄露的修正線性單元(Randomized Leaky Rectified Linear Unit,RReLU)也屬于 ReLU 修正類激活函數的一員。和 Leaky ReLU 以及 PReLU 很相似,為負值輸入添加了一個線性項。而最關鍵的區別是,這個線性項的斜率在每一個節點上都是隨機分配的(通常服從均勻分布)。

9. ELU

ELU

指數線性單元(Exponential Linear Unit,ELU)也屬于 ReLU 修正類激活函數的一員。和 PReLU 以及 RReLU 類似,為負值輸入添加了一個非零輸出。和其它修正類激活函數不同的是,它包括一個負指數項,從而防止靜默神經元出現,導數收斂為零,從而提高學習效率。

10. SELU

SELU

擴展指數線性單元(Scaled Exponential Linear Unit,SELU)是激活函數指數線性單元(ELU)的一個變種。其中λ和α是固定數值(分別為 1.0507 和 1.6726)。這些值背后的推論(零均值/單位方差)構成了自歸一化神經網絡的基礎(SNN)。

11. SReLU

SReLU

S 型整流線性激活單元(S-shaped Rectified Linear Activation Unit,SReLU)屬于以 ReLU 為代表的整流激活函數族。它由三個分段線性函數組成。其中兩種函數的斜度,以及函數相交的位置會在模型訓練中被學習。

12. Hard Sigmoid

Hard Sigmoid

Hard Sigmoid 是 Logistic Sigmoid 激活函數的分段線性近似。它更易計算,這使得學習計算的速度更快,盡管首次派生值為零可能導致靜默神經元/過慢的學習速率(詳見 ReLU)。

13. Hard Tanh

 Hard Tanh

Hard Tanh 是 Tanh 激活函數的線性分段近似。相較而言,它更易計算,這使得學習計算的速度更快,盡管首次派生值為零可能導致靜默神經元/過慢的學習速率(詳見 ReLU)。

14. LeCun Tanh

 LeCun Tanh

LeCun Tanh(也被稱作 Scaled Tanh)是 Tanh 激活函數的擴展版本。它具有以下幾個可以改善學習的屬性:f(± 1) = ±1;二階導數在 x=1 最大化;且有效增益接近 1。

15. ArcTan

ArcTan

視覺上類似于雙曲正切(Tanh)函數,ArcTan 激活函數更加平坦,這讓它比其他雙曲線更加清晰。在默認情況下,其輸出范圍在-π/2 和π/2 之間。其導數趨向于零的速度也更慢,這意味著學習的效率更高。但這也意味著,導數的計算比 Tanh 更加昂貴。

16. Softsign

Softsign

Softsign 是 Tanh 激活函數的另一個替代選擇。就像 Tanh 一樣,Softsign 是反對稱、去中心、可微分,并返回-1 和 1 之間的值。其更平坦的曲線與更慢的下降導數表明它可以更高效地學習。另一方面,導數的計算比 Tanh 更麻煩。

17. SoftPlus

SoftPlus

作為 ReLU 的一個不錯的替代選擇,SoftPlus 能夠返回任何大于 0 的值。與 ReLU 不同,SoftPlus 的導數是連續的、非零的,無處不在,從而防止出現靜默神經元。然而,SoftPlus 另一個不同于 ReLU 的地方在于其不對稱性,不以零為中心,這興許會妨礙學習。此外,由于導數常常小于 1,也可能出現梯度消失的問題。

18. Signum

 Signum

激活函數 Signum(或者簡寫為 Sign)是二值階躍激活函數的擴展版本。它的值域為 [-1,1],原點值是 0。盡管缺少階躍函數的生物動機,Signum 依然是反對稱的,這對激活函數來說是一個有利的特征。

19. Bent Identity

Bent Identity

激活函數 Bent Identity 是介于 Identity 與 ReLU 之間的一種折衷選擇。它允許非線性行為,盡管其非零導數有效提升了學習并克服了與 ReLU 相關的靜默神經元的問題。由于其導數可在 1 的任意一側返回值,因此它可能容易受到梯度爆炸和消失的影響。

20. Symmetrical Sigmoid

Symmetrical Sigmoid

Symmetrical Sigmoid 是另一個 Tanh 激活函數的變種(實際上,它相當于輸入減半的 Tanh)。和 Tanh 一樣,它是反對稱的、零中心、可微分的,值域在 -1 到 1 之間。它更平坦的形狀和更慢的下降派生表明它可以更有效地進行學習。

21. Log Log

Log Log

Log Log 激活函數(由上圖 f(x) 可知該函數為以 e 為底的嵌套指數函數)的值域為 [0,1],Complementary Log Log 激活函數有潛力替代經典的 Sigmoid 激活函數。該函數飽和地更快,且零點值要高于 0.5。

22. Gaussian

Gaussian

高斯激活函數(Gaussian)并不是徑向基函數網絡(RBFN)中常用的高斯核函數,高斯激活函數在多層感知機類的模型中并不是很流行。該函數處處可微且為偶函數,但一階導會很快收斂到零。

23. Absolute

 Absolute

顧名思義,絕對值(Absolute)激活函數返回輸入的絕對值。該函數的導數除了零點外處處有定義,且導數的量值處處為 1。這種激活函數一定不會出現梯度爆炸或消失的情況。

24. Sinusoid

Sinusoid

如同余弦函數,Sinusoid(或簡單正弦函數)激活函數為神經網絡引入了周期性。該函數的值域為 [-1,1],且導數處處連續。此外,Sinusoid 激活函數為零點對稱的奇函數。

25. Cos

Cos

如同正弦函數,余弦激活函數(Cos/Cosine)為神經網絡引入了周期性。它的值域為 [-1,1],且導數處處連續。和 Sinusoid 函數不同,余弦函數為不以零點對稱的偶函數。

26. Sinc

Sinc

Sinc 函數(全稱是 Cardinal Sine)在信號處理中尤為重要,因為它表征了矩形函數的傅立葉變換(Fourier transform)。作為一種激活函數,它的優勢在于處處可微和對稱的特性,不過它比較容易產生梯度消失的問題。

原文:

https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/

【本文是51CTO專欄機構“機器之心”的原創譯文,微信公眾號“機器之心( id: almosthuman2014)”】

 

戳這里,看該作者更多好文

責任編輯:趙寧寧 來源: 51CTO專欄
相關推薦

2019-08-29 10:10:52

神經網絡激活函數人工智能

2018-07-03 16:10:04

神經網絡生物神經網絡人工神經網絡

2022-11-01 16:02:31

架構神經網絡模型

2018-04-03 14:42:46

Python神經網絡深度學習

2020-07-01 09:08:55

神經網絡深度學習網絡

2022-09-26 00:00:00

神經網絡激活函數sigmoid

2018-09-09 23:58:25

可視化神經網絡模型

2017-07-04 14:35:59

轉寫網絡結構分析神經元

2017-09-06 11:10:58

大數據數據可視化神經網絡

2017-04-17 10:25:29

神經網絡可視化ActiVis

2023-04-18 15:15:06

神經網絡激活函數開發

2021-03-08 09:25:48

神經網絡數據圖形

2021-01-10 08:46:43

神經網絡激活函數人工神經網絡

2024-07-24 08:04:24

神經網絡激活函數

2024-11-07 08:26:31

神經網絡激活函數信號

2017-07-26 16:48:46

神經網絡可視化工具TensorFlow

2017-04-19 08:32:50

大數據數據可視化編程工具

2023-04-20 15:13:11

PytorchGrad-CAM架構

2020-06-15 17:40:32

神經網絡人工智能可視化工具

2023-02-07 07:03:39

點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 国产一级在线 | 国产一区二区精品在线观看 | 久久久久久免费毛片精品 | 日韩午夜 | 欧美国产视频 | 日本小电影网站 | 毛片视频网址 | 久久久精品一区二区三区四季av | 日韩精品三区 | 国产精品久久影院 | 日韩色视频| 亚洲精品久久久久久久不卡四虎 | 成人网址在线观看 | 中文字幕精品一区二区三区精品 | 国产片侵犯亲女视频播放 | 99久久精品免费看国产免费软件 | 国产精品久久久久久久久久久久 | 综合色婷婷 | 欧美精品在线观看 | 男人av在线播放 | 国产2区 | 一级做a爰片性色毛片16 | 国产视频久久 | 一区二区福利视频 | 国产视频久久久 | 欧美日韩在线免费 | 国产九九精品 | 国产乱码精品1区2区3区 | 在线国产一区二区 | 一区二区成人 | 一级欧美| 欧美一区二区三区久久精品 | 一区二区三区中文字幕 | 日日摸日日添日日躁av | 欧美一区二区三区在线视频 | 一级欧美黄色片 | 少妇久久久久 | 亚洲精品www久久久久久广东 | 在线精品一区 | 欧美视频二区 | 夜夜爽99久久国产综合精品女不卡 |