成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

Python的高級特征你知多少?來對比看看

開發 后端
Python 多好用不用多說,大家看看自己用的語言就知道了。但是 Python 隱藏的高級功能你都 get 了嗎?本文中,作者列舉了 Python 中五種略高級的特征以及它們的使用方法,快來一探究竟吧!

Python 多好用不用多說,大家看看自己用的語言就知道了。但是 Python 隱藏的高級功能你都 get 了嗎?本文中,作者列舉了 Python 中五種略高級的特征以及它們的使用方法,快來一探究竟吧!

Python 是一種美麗的語言,它簡單易用卻非常強大。但你真的會用 Python 的所有功能嗎?

任何編程語言的高級特征通常都是通過大量的使用經驗才發現的。比如你在編寫一個復雜的項目,并在 stackoverflow 上尋找某個問題的答案。然后你突然發現了一個非常優雅的解決方案,它使用了你從不知道的 Python 功能!

這種學習方式太有趣了:通過探索,偶然發現什么。

下面是 Python 的 5 種高級特征,以及它們的用法。

Lambda 函數

Lambda 函數是一種比較小的匿名函數——匿名是指它實際上沒有函數名。

Python 函數通常使用 def a_function_name() 樣式來定義,但對于 lambda 函數,我們根本沒為它命名。這是因為 lambda 函數的功能是執行某種簡單的表達式或運算,而無需完全定義函數。

lambda 函數可以使用任意數量的參數,但表達式只能有一個。

  1. x = lambda a, b : a * b 
  2. print(x(5, 6)) # prints '30' 
  3.  
  4. x = lambda a : a*3 + 3 
  5. print(x(3)) # prints '12' 

看它多么簡單!我們執行了一些簡單的數學運算,而無需定義整個函數。這是 Python 的眾多特征之一,這些特征使它成為一種干凈、簡單的編程語言。

Map 函數

Map() 是一種內置的 Python 函數,它可以將函數應用于各種數據結構中的元素,如列表或字典。對于這種運算來說,這是一種非常干凈而且可讀的執行方式。

  1. def square_it_func(a): 
  2.     return a * a 
  3.  
  4. x = map(square_it_func, [1, 4, 7]) 
  5. print(x) # prints '[1, 16, 47]' 
  6.  
  7. def multiplier_func(a, b): 
  8.     return a * b 
  9.  
  10. x = map(multiplier_func, [1, 4, 7], [2, 5, 8]) 
  11. print(x) # prints '[2, 20, 56]'看看上面的示例!我們可以將函數應用于單個或多個列表。實際上,你可以使用任何 Python 函數作為 map 函數的輸入,只要它與你正在操作的序列元素是兼容的。 

Filter 函數

filter 內置函數與 map 函數非常相似,它也將函數應用于序列結構(列表、元組、字典)。二者的關鍵區別在于 filter() 將只返回應用函數返回 True 的元素。

詳情請看如下示例:

  1. # Our numbers 
  2. numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] 
  3.  
  4. Function that filters out all numbers which are odd 
  5. def filter_odd_numbers(num): 
  6.  
  7.     if num % 2 == 0: 
  8.         return True 
  9.     else
  10.         return False 
  11.  
  12. filtered_numbers = filter(filter_odd_numbers, numbers) 
  13.  
  14. print(filtered_numbers) 
  15. # filtered_numbers = [2, 4, 6, 8, 10, 12, 14] 

我們不僅評估了每個列表元素的 True 或 False,filter() 函數還確保只返回匹配為 True 的元素。非常便于處理檢查表達式和構建返回列表這兩步。

Itertools 模塊

Python 的 Itertools 模塊是處理迭代器的工具集合。迭代器是一種可以在 for 循環語句(包括列表、元組和字典)中使用的數據類型。

使用 Itertools 模塊中的函數讓你可以執行很多迭代器操作,這些操作通常需要多行函數和復雜的列表理解。關于 Itertools 的神奇之處,請看以下示例:

  1. from itertools import * 
  2.  
  3. # Easy joining of two lists into a list of tuples 
  4. for i in izip([1, 2, 3], ['a''b''c']): 
  5.     print i 
  6. # ('a', 1) 
  7. # ('b', 2) 
  8. # ('c', 3) 
  9.  
  10. # The count() function returns an interator that  
  11. # produces consecutive integers, forever. This  
  12. # one is great for adding indices next to your list  
  13. # elements for readability and convenience 
  14. for i in izip(count(1), ['Bob''Emily''Joe']): 
  15.     print i 
  16. # (1, 'Bob'
  17. # (2, 'Emily'
  18. # (3, 'Joe')     
  19.  
  20. # The dropwhile() function returns an iterator that returns  
  21. all the elements of the input which come after a certain  
  22. # condition becomes false for the first time.  
  23. def check_for_drop(x): 
  24.     print 'Checking: ', x 
  25.     return (x > 5) 
  26.  
  27. for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]): 
  28.     print 'Result: ', i 
  29.  
  30. # Checking: 2 
  31. # Checking: 4 
  32. # Result: 6 
  33. # Result: 8 
  34. # Result: 10 
  35. # Result: 12 
  36.  
  37.  
  38. # The groupby() function is great for retrieving bunches 
  39. of iterator elements which are the same or have similar  
  40. # properties 
  41.  
  42. a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5]) 
  43. for key, value in groupby(a): 
  44.     print(key, value), end=' '
  45.  
  46. # (1, [1, 1, 1]) 
  47. # (2, [2, 2, 2])  
  48. # (3, [3, 3])  
  49. # (4, [4])  
  50. # (5, [5])  

Generator 函數

Generator 函數是一個類似迭代器的函數,即它也可以用在 for 循環語句中。這大大簡化了你的代碼,而且相比簡單的 for 循環,它節省了很多內存。

比如,我們想把 1 到 1000 的所有數字相加,以下代碼塊的***部分向你展示了如何使用 for 循環來進行這一計算。

如果列表很小,比如 1000 行,計算所需的內存還行。但如果列表巨長,比如十億浮點數,這樣做就會出現問題了。使用這種 for 循環,內存中將出現大量列表,但不是每個人都有***的 RAM 來存儲這么多東西的。Python 中的 range() 函數也是這么干的,它在內存中構建列表。

代碼中第二部分展示了使用 Python generator 函數對數字列表求和。generator 函數創建元素,并只在必要時將其存儲在內存中,即一次一個。這意味著,如果你要創建十億浮點數,你只能一次一個地把它們存儲在內存中!Python 2.x 中的 xrange() 函數就是使用 generator 來構建列表。

上述例子說明:如果你想為一個很大的范圍生成列表,那么就需要使用 generator 函數。如果你的內存有限,比如使用移動設備或邊緣計算,使用這一方法尤其重要。

也就是說,如果你想對列表進行多次迭代,并且它足夠小,可以放進內存,那***使用 for 循環或 Python 2.x 中的 range 函數。因為 generator 函數和 xrange 函數將會在你每次訪問它們時生成新的列表值,而 Python 2.x range 函數是靜態的列表,而且整數已經置于內存中,以便快速訪問。

  1. # (1) Using a for loopv 
  2. numbers = list() 
  3.  
  4. for i in range(1000): 
  5.     numbers.append(i+1) 
  6.  
  7. total = sum(numbers) 
  8.  
  9. # (2) Using a generator 
  10.  def generate_numbers(n): 
  11.      num, numbers = 1, [] 
  12.      while num < n: 
  13.            numbers.append(num) 
  14.      num += 1 
  15.      return numbers 
  16.  total = sum(generate_numbers(1000)) 
  17.  
  18.  # (3) range() vs xrange() 
  19.  total = sum(range(1000 + 1)) 
  20.  total = sum(xrange(1000 + 1)) 

原文鏈接:https://towardsdatascience.com/5-advanced-features-of-python-and-how-to-use-them-73bffa373c84

責任編輯:武曉燕 來源: 機器之心
相關推薦

2016-01-28 19:58:43

創業IT建設

2020-06-08 07:00:00

數據安全加密機密計算

2016-08-30 13:23:26

DevOpsOpenStackIaaS

2018-06-26 09:24:02

流量陷阱費用

2020-05-08 07:00:00

Linux色碼文件類型

2021-12-09 06:41:56

Python協程多并發

2011-08-05 15:32:44

2012-02-13 22:50:59

集群高可用

2024-08-06 10:07:15

2018-09-13 22:56:15

機器學習損失函數深度學習

2022-05-08 18:02:11

tunnel隧道云原生

2015-06-10 14:07:27

數據中心

2017-08-07 19:25:51

2016-11-08 13:27:29

云計算成本企業

2010-08-16 09:15:57

2021-12-04 11:17:32

Javascript繼承編程

2013-12-23 14:00:31

Windows 8.2Windows 8.1

2025-04-14 08:50:00

Google ADK人工智能AI

2017-07-14 10:51:37

性能優化SQL性能分析

2021-12-10 07:47:30

Javascript異步編程
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 精品欧美一区二区三区 | 二区中文字幕 | 天天操夜夜骑 | 国产视频一区二区 | 91影院在线观看 | 国产精品久久久久久久 | 久久亚洲一区二区三 | 亚洲国产视频一区二区 | 精品亚洲二区 | 国产精品视频一二三区 | 日韩精品一区二区三区老鸭窝 | 国产一区二区影院 | 亚洲精品二区 | 国产美女自拍视频 | 在线欧美视频 | 国产玖玖| 黑人精品欧美一区二区蜜桃 | 综合精品久久久 | 亚洲视频国产视频 | 久久久免费毛片 | 成人国产精品久久 | 国产高清在线精品一区二区三区 | 99精品网| 精品一二三区 | 亚洲精品女优 | 97精品超碰一区二区三区 | 日韩精品av一区二区三区 | 羞羞视频在线观看 | 一区免费观看 | 羞羞在线视频 | 视频一区二区在线观看 | 国产精品色av| 久精品久久| 91在线精品一区二区 | 狠狠爱一区二区三区 | 欧美电影在线观看网站 | 成人一区二区三区在线观看 | 欧美在线观看一区二区 | 国产精品免费观看视频 | 99热在线免费 | 久久中文网 |