成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

AI也有健忘癥?英國41歲教授專訪:解決災難性遺忘

人工智能
近日,來自羅切斯特大學的41歲計算機科學家Christopher Kanan在專訪中表示,自己正在構建可以讓AI隨著時間的推移而不斷學習的算法——就像我們人類一樣。

?如何實現持續學習,讓AI不斷片?

近日,來自羅切斯特大學的41歲計算機科學家Christopher Kanan在專訪中表示,自己正在構建可以讓AI隨著時間的推移而不斷學習的算法——就像我們人類一樣。

圖片

災難性遺忘

眾所周知,AI在經過訓練之后可以很好地完成「考試范圍內」的任務,但是這些算法卻不能像人類那樣不斷用新信息更新知識庫。

為了學習哪怕是一個新的東西,算法也必須從頭開始訓練,而代價就是忘記它之前已經學習過的幾乎所有內容。如此帶來的問題就是——「災難性遺忘」(Catastrophic Forgetting)。就像你遇到一個新朋友,你唯一能知道她名字的方法就是重啟你的大腦。

之所以會出現這種情況,要歸咎于神經網絡學習新事物的方式。這些算法的學習需要改變神經元之間的連接強度,然而這同時也代表了過去的知識,因此過多地改變連接就會導致遺忘。

生物神經網絡已經進化了數億年的策略,以確保重要信息保持穩定。但是今天的人工神經網絡很難在新舊知識之間取得良好的平衡。當網絡看到新數據時,它們的連接很容易被覆蓋,這可能導致突然而嚴重的無法識別過去的信息。

1. 您在哲學方面的學習對你思考研究的方式產生了哪些影響呢?

哲學教會你的是,「如何提出合理的論點」和「如何分析他人的論點?」

我的實驗室受到這個問題的啟發:如果我們不能做 X,我們怎么能做 Y?

我們會隨著時間的推移而學習,但神經網絡不會,他的知識量是固定的。那么如果人類未來要想制造通用人工智能,這是必須解決的基本問題。

圖片

Kanan的研究筆記

2. 學術界目前對災難性遺忘的解決進展如何?

目前最成功的方法叫做重放(Replay),這樣可以存儲過去的知識,然后在訓練過程中用新的數據集重放,這樣原始信息就不會丟失。

這個方法的靈感來自我們大腦中的記憶鞏固過程(Memory Consolidation),睡眠過程中一天的學習的內容被重新編碼,并隨著神經元激活而被重放。

圖片

換句話說,新的學習并不能完全根除算法過去的知識。

有三種方法可以實現這一點。

  • 最常見的方法是「真實回放」,研究人員存儲原始輸入的子集——例如,用于對象識別任務的原始圖像——然后將這些存儲的過去圖像與學習的新圖像混合。
  • 第二種方法是重放圖像的壓縮表示。
  • 第三種不太常見的方法是「生成回放」。

在這里,人工神經網絡實際上生成了過去經驗的合成版本,然后將該合成示例與新示例混合。我的實驗室專注于后兩種方法。

3. 如果我們能夠徹底解決災難性遺忘,這是否意味著人工智能可以隨著時間的推移不斷學習新事物?

不完全是。我認為持續學習領域的開放性問題并不是災難性遺忘。

我真正感興趣的是:

過去的學習如何讓未來的學習更有效率?未來的學習如何糾正過去的學習?這些是很少人衡量的東西,我認為這樣做是推動該領域向前發展的關鍵部分,因為實際上,這不僅僅是忘記一些東西,而是關于如何成為一個更好的學習者。

Christopher Kanan表示:

與現代神經網絡相比,我們的頭腦中發生的事情肯定要多得多。我們需要建立正確的實驗和算法設置來衡量過去的學習是否有助于未來的學習。而目前最大的問題是我們沒有很好的數據集來研究持續學習,我們基本上是在使用傳統機器學習中使用的現有數據集并將其重新開發。

一般來說,機器學習的常規操作是我們有一個訓練集和一個測試集——我們在訓練集上訓練,在測試集上進行測試。

但持續學習打破了這些規則,它讓訓練集會隨著訓練者的學習而發展,因此我們需要一個非常好的持續學習環境。

4. 理想的持續學習環境應該是什么樣的?

告訴你它不是什么比告訴你是什么更容易。

我可以告訴你它可能具有的屬性。所以現在,讓我們假設人工智能算法不是模擬中的具身智能。然后至少,理想情況下,我們正在從視頻中學習,或者類似的東西,比如多模態視頻流,并希望做的不僅僅是靜態圖像的分類。

有很多關于這方面的開放性問題。幾年前我參加了一個持續學習研討會,一些像我這樣的人說,「我們必須停止使用一個叫做MNIST的數據集,它太簡單了。」然后有人說,「好吧,那我們就對星際爭霸進行增量學習。」

出于各種原因,我現在也在這樣做,但我認為還不足以真正地解決這個問題。畢竟,生活比學習玩星際爭霸要豐富得多。

5. 您的實驗室如何嘗試設計可隨時間推移不斷學習的算法?

我和我以前的學生Tyler Hayes一起開創了一項有關類比推理的持續學習研究,這篇文章也同時發表在CVPR 2021上。

圖片

論文鏈接:https://openaccess.thecvf.com/content/CVPR2021W/CLVision/html/Hayes_Selective_Replay_Enhances_Learning_in_Online_Continual_Analogical_Reasoning_CVPRW_2021_paper.html

我們認為這將是研究遷移學習(Transfer Learning)理念的好領域,因為我們現在需要使用更復雜的技能來解決更復雜的問題。

具體來說,我們對后向遷移(Backward Transfer)的數據進行了測量,即過去學習的東西在未來對你有多大幫助,反之亦然。

我們發現了很好的遷移證據,比對象識別這樣的簡單任務重要得多。

6. 你認為人工智能真的會像人類一樣學習嗎?

我想他們會的。許多極具天賦的人在這個領域朝著這個目標邁進。

但我們需要的是創造力。機器學習社區的很多研究都是在前人研究的基礎上做一些小改進,真正變革性的研究不多。

但是這一天一定會到來的,只是時間早晚問題。

Christopher Kanan

Christopher Kanan是羅切斯特大學計算機科學的終身副教授。主要的工作方向是深度學習的基礎研究,包括持續學習,人工智能的偏見,醫學計算機視覺,以及語言引導的場景理解。

圖片

Kanan曾從事在線持續學習、視覺問題回答、計算病理學、語義分割、物體識別、物體檢測、主動視覺、物體跟蹤等工作。除了機器學習,他在眼球追蹤、靈長類動物視覺和理論神經科學方面也有深厚的背景。

在此之前,他是羅切斯特理工學院(RIT)卡爾森影像科學中心的一名終身副教授。在職期間,他和同事共同創建了人類意識人工智能中心(CHAI),并擔任了四年的副主任。此外,Kanan還曾是康奈爾科技大學的客座副教授,為每年約100名研究生教授了4年的深度學習課程。

圖片

Christopher Kanan在俄克拉荷馬州農村的一個小鎮上長大。

1996年的時候,他就開始探索人工智能了,還在讀高中的Kanan自制了很多「bot」來玩在線多人計算機游戲。

2002年,Kanan考入俄克拉荷馬州立大學(OSU)主修哲學和計算機科學雙學位,并于2004年獲得學士學位。

2006年,在南加州大學(USC)獲得了計算機科學獲得碩士學位,主要研究人工智能和神經科學,并與計算神經科學和神經網絡的先驅Michael Arbib一起工作。2013年,在加州大學圣地亞哥分校(UCSD)獲得計算機科學博士學位。畢業后,Kanan又到加州理工學院從事博士后研究。

圖片

參考資料:https://www.quantamagazine.org/the-computer-scientist-trying-to-teach-ai-to-learn-like-we-do-20220802/?

責任編輯:未麗燕 來源: 新智元
相關推薦

2024-12-17 12:08:21

IAA多模態LLM

2023-05-03 20:59:51

ChatGPTRMT模型

2014-12-04 10:05:18

2025-04-29 07:00:00

2023-09-28 08:23:18

AI模型

2021-04-04 22:39:50

Ubiquiti數據泄漏黑客

2024-03-01 13:31:21

2016-11-14 13:56:14

2022-11-03 13:47:26

云遷移云計算轉型

2015-06-01 15:25:06

Oracle數據庫災難恢復

2015-06-05 10:13:09

2018-06-12 00:33:20

AI機器學習人工智能

2018-10-24 09:54:37

GitHub宕機程序員

2013-04-16 10:21:23

Windows 8Vista

2023-03-28 08:00:00

2023-11-06 16:04:40

人工智能網絡安全

2022-06-15 14:59:11

AIMIT

2014-08-01 10:26:08

2020-09-17 11:20:08

云計算

2020-08-18 07:00:00

云計算混合云數據
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 九九热免费视频在线观看 | 人妖videosex高潮另类 | 91久久视频 | 欧美一区二区三区在线看 | 欧美a√| 成人精品一区二区三区 | 天天操人人干 | 99精品视频在线 | 免费中文字幕 | 国产精品一区二区无线 | 欧美日韩视频在线播放 | 欧美一级欧美一级在线播放 | 久久99精品久久久久久国产越南 | 黑人巨大精品欧美一区二区免费 | 国产精品视频不卡 | 亚洲精品美女视频 | 天天爽夜夜爽精品视频婷婷 | 欧美精品一区三区 | 亚洲乱码一区二区三区在线观看 | 在线中文视频 | 亚洲成人免费视频在线观看 | 国产精品一区二区av | 亚洲日韩中文字幕一区 | 伊人爽 | 刘亦菲国产毛片bd | 成人免费精品视频 | 天天爽网站 | 国产日韩欧美电影 | 一级a毛片 | 国产日韩欧美 | 成人a视频 | 91久久婷婷 | 一级黄片一级毛片 | 亚洲欧美视频 | aaaa网站| 成人免费一级视频 | 精品国产乱码久久久久久久久 | 精品成人佐山爱一区二区 | 国产在线激情视频 | 中文日韩在线视频 | 欧美日韩国产一区二区三区不卡 |