成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

分布式ID生成器

開發 開發工具 分布式
本文要討論的核心問題是如何高效生成趨勢有序的全局唯一ID。

一、需求緣起

幾乎所有的業務系統,都有生成一個唯一記錄標識的需求,例如:

  • 消息標識:message-id
  • 訂單標識:order-id
  • 帖子標識:tiezi-id

這個記錄標識往往就是數據庫中的主鍵,數據庫上會建立聚集索引(cluster index),即在物理存儲上以這個字段排序。

這個記錄標識上的查詢,往往又有分頁或者排序的業務需求,例如:

  • 拉取***的一頁消息
    1. select message-id/ order by time/ limit 100 
  • 拉取***的一頁訂單
    1. select order-id/ order by time/ limit 100 
  • 拉取***的一頁帖子
    1. select tiezi-id/ order by time/ limit 100 

所以往往要有一個time字段,并且在time字段上建立普通索引(non-cluster index)。

普通索引存儲的是實際記錄的指針,其訪問效率會比聚集索引慢,如果記錄標識在生成時能夠基本按照時間有序,則可以省去這個time字段的索引查詢:

  1. select message-id/ (order by message-id)/limit 100 

強調,能這么做的前提是,message-id的生成基本是趨勢時間遞增的。

這就引出了記錄標識生成(也就是上文提到的三個XXX-id)的兩大核心需求:

  • 全局唯一
  • 趨勢有序

這也是本文要討論的核心問題:如何高效生成趨勢有序的全局唯一ID。

二、常見方法、不足與優化

方法一:使用數據庫的 auto_increment 來生成全局唯一遞增ID

優點:

  • 簡單,使用數據庫已有的功能
  • 能夠保證唯一性
  • 能夠保證遞增性
  • 步長固定

缺點:

  • 可用性難以保證:數據庫常見架構是一主多從+讀寫分離,生成自增ID是寫請求,主庫掛了就玩不轉了
  • 擴展性差,性能有上限:因為寫入是單點,數據庫主庫的寫性能決定ID的生成性能上限,并且難以擴展

改進方法:

  • 冗余主庫,避免寫入單點
  • 數據水平切分,保證各主庫生成的ID不重復

如上圖所述,由1個寫庫變成3個寫庫,每個寫庫設置不同的auto_increment初始值,以及相同的增長步長,以保證每個數據庫生成的ID是不同的(上圖中庫0生成0,3,6,9…,庫1生成1,4,7,10,庫2生成2,5,8,11…)

改進后的架構保證了可用性,但缺點是:

  • 喪失了ID生成的“絕對遞增性”:先訪問庫0生成0,3,再訪問庫1生成1,可能導致在非常短的時間內,ID生成不是絕對遞增的(這個問題不大,目標是趨勢遞增,不是絕對遞增)
  • 數據庫的寫壓力依然很大,每次生成ID都要訪問數據庫

為了解決上述兩個問題,引出了第二個常見的方案。

方法二:單點批量ID生成服務

分布式系統之所以難,很重要的原因之一是“沒有一個全局時鐘,難以保證絕對的時序”,要想保證絕對的時序,還是只能使用單點服務,用本地時鐘保證“絕對時序”。

數據庫寫壓力大,是因為每次生成ID都訪問了數據庫,可以使用批量的方式降低數據庫寫壓力。

數據庫使用雙master保證可用性

如上圖所述,數據庫使用雙master保證可用性,數據庫中只存儲當前ID的***值,例如0。

ID生成服務假設每次批量拉取6個ID,服務訪問數據庫,將當前ID的***值修改為5,這樣應用訪問ID生成服務索要ID,ID生成服務不需要每次訪問數據庫,就能依次派發0,1,2,3,4,5這些ID了。

當ID發完后,再將ID的***值修改為11,就能再次派發6,7,8,9,10,11這些ID了,于是數據庫的壓力就降低到原來的1/6。

優點:

  • 保證了ID生成的絕對遞增有序
  • 大大的降低了數據庫的壓力,ID生成可以做到每秒生成幾萬幾十萬個

缺點:

  • 服務仍然是單點
  • 如果服務掛了,服務重啟起來之后,繼續生成ID可能會不連續,中間出現空洞(服務內存是保存著0,1,2,3,4,5,數據庫中max-id是5,分配到3時,服務重啟了,下次會從6開始分配,4和5就成了空洞,不過這個問題也不大)
  • 雖然每秒可以生成幾萬幾十萬個ID,但畢竟還是有性能上限,無法進行水平擴展

改進方法:

單點服務的常用高可用優化方案是“備用服務”,也叫“影子服務”,所以我們能用以下方法優化上述缺點(1):

如上圖,對外提供的服務是主服務,有一個影子服務時刻處于備用狀態,當主服務掛了的時候影子服務頂上。

這個切換的過程對調用方是透明的,可以自動完成,常用的技術是vip+keepalived,具體就不在這里展開。

另外,ID-gen-service也可以實施水平擴展,以解決上述缺點(3),但會引發一致性問題,具體解決方案詳見《淺談CAS在分布式ID生成方案上的應用》。

方法三:uuid/guid

不管是通過數據庫,還是通過服務來生成ID,業務方Application都需要進行一次遠程調用,比較耗時。

有沒有一種本地生成ID的方法,即高性能,又時延低呢?

uuid是一種常見的方案:

  1. string ID =GenUUID(); 

優點:

  • 本地生成ID,不需要進行遠程調用,時延低
  • 擴展性好,基本可以認為沒有性能上限

缺點:

  • 無法保證趨勢遞增
  • uuid過長,往往用字符串表示,作為主鍵建立索引查詢效率低,常見優化方案為“轉化為兩個uint64整數存儲”或者“折半存儲”(折半后不能保證唯一性)

方法四:取當前毫秒數

uuid是一個本地算法,生成性能高,但無法保證趨勢遞增,且作為字符串ID檢索效率低,有沒有一種能保證遞增的本地算法呢?

取當前毫秒數是一種常見方案:

  1. uint64 ID = GenTimeMS(); 

優點:

  • 本地生成ID,不需要進行遠程調用,時延低
  • 生成的ID趨勢遞增
  • 生成的ID是整數,建立索引后查詢效率高

缺點:

  • 如果并發量超過1000,會生成重復的ID

這個缺點要了命了,不能保證ID的唯一性。當然,使用微秒可以降低沖突概率,但每秒最多只能生成1000000個ID,再多的話就一定會沖突了,所以使用微秒并不從根本上解決問題。

方法五:類snowflake算法

snowflake是twitter開源的分布式ID生成算法,其核心思想為,一個long型的ID:

  • 41bit作為毫秒數
  • 10bit作為機器編號
  • 12bit作為毫秒內序列號

算法單機每秒內理論上最多可以生成1000*(2^12),也就是400W的ID,完全能滿足業務的需求。

借鑒snowflake的思想,結合各公司的業務邏輯和并發量,可以實現自己的分布式ID生成算法。

舉例,假設某公司ID生成器服務的需求如下:

  • 單機高峰并發量小于1W,預計未來5年單機高峰并發量小于10W
  • 有2個機房,預計未來5年機房數量小于4個
  • 每個機房機器數小于100臺
  • 目前有5個業務線有ID生成需求,預計未來業務線數量小于10個

分析過程如下:

  • 高位取從2017年1月1日到現在的毫秒數(假設系統ID生成器服務在這個時間之后上線),假設系統至少運行10年,那至少需要10年*365天*24小時*3600秒*1000毫秒=320*10^9,差不多預留39bit給毫秒數
  • 每秒的單機高峰并發量小于10W,即平均每毫秒的單機高峰并發量小于100,差不多預留7bit給每毫秒內序列號
  • 5年內機房數小于4個,預留2bit給機房標識
  • 每個機房小于100臺機器,預留7bit給每個機房內的服務器標識
  • 業務線小于10個,預留4bit給業務線標識

這樣設計的64bit標識,可以保證:

  • 每個業務線、每個機房、每個機器生成的ID都是不同的
  • 同一個機器,每個毫秒內生成的ID都是不同的
  • 同一個機器,同一個毫秒內,以序列號區區分保證生成的ID是不同的
  • 將毫秒數放在***位,保證生成的ID是趨勢遞增的

缺點:

  • 由于“沒有一個全局時鐘”,每臺服務器分配的ID是絕對遞增的,但從全局看,生成的ID只是趨勢遞增的(有些服務器的時間早,有些服務器的時間晚)

【本文為51CTO專欄作者“58沈劍”原創稿件,轉載請聯系原作者】

戳這里,看該作者更多好文

責任編輯:趙寧寧 來源: 51CTO專欄
相關推薦

2019-12-27 10:00:34

開源技術 軟件

2021-07-14 07:17:37

Springboot分布式UIDGenerato

2024-10-07 08:52:59

分布式系統分布式 IDID

2020-11-04 14:40:26

分布式Tinyid數據庫

2025-03-11 08:50:00

CASID分布式

2019-09-05 13:06:08

雪花算法分布式ID

2016-11-29 09:12:21

數據庫分布式ID

2024-12-04 09:36:37

2022-02-23 07:09:30

分布式ID雪花算法

2023-12-12 07:13:39

雪花算法分布式ID

2024-10-29 08:30:31

2025-03-28 10:27:29

2022-06-16 07:31:15

MySQL服務器服務

2023-03-05 18:23:38

分布式ID節點

2022-01-27 10:06:29

生成算法分布式

2017-06-19 17:55:22

CASID分布式

2017-04-12 09:29:02

HiveMapReduceSpark

2024-11-19 15:55:49

2024-02-22 17:02:09

IDUUID雪花算法

2020-07-21 11:35:21

開發技能代碼
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 免费在线视频a | 国产精品一区二区免费 | 国产欧美日韩一区二区三区 | 免费观看一级毛片 | 男女又爽又黄视频 | 国内精品视频 | 成人在线中文字幕 | 中文字幕乱码一区二区三区 | a在线视频观看 | 美女黄网站 | 高清人人天天夜夜曰狠狠狠狠 | 一级毛片黄片 | 免费在线视频一区二区 | www.色午夜.com | 狠狠的干| 国产男女精品 | av一级毛片 | 国产精品久久国产精品 | 中文字幕乱码一区二区三区 | 一呦二呦三呦国产精品 | 久久久99国产精品免费 | 成人欧美一区二区三区视频xxx | 国产精品视频网 | 99久久久99久久国产片鸭王 | 国产高清在线观看 | 福利视频大全 | 精品久久久一区 | 免费午夜剧场 | 成人一区在线观看 | 色婷婷激情综合 | 国产免费一区二区 | 精品国产一区二区三区久久影院 | 一区二区三区欧美在线 | 四虎影院免费在线 | 亚洲精品电影网在线观看 | 国产一区二区三区精品久久久 | 国产三级精品三级在线观看四季网 | 日韩三区在线观看 | 欧美日韩一区二区视频在线观看 | 国产精品久久久久久亚洲调教 | 密乳av |