成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

Python 爬取了馬蜂窩的出行數據,告訴你這個夏天哪里最值得去!

開發 后端 數據分析
正值火辣的暑假,朋友圈已經被大家的旅行足跡刷屏了,真的十分驚嘆于那些把全國所有省基本走遍的朋友們。與此同時,也就萌生了寫篇旅行相關的內容,本次數據來源于一個對于爬蟲十分友好的旅行攻略類網站:螞蜂窩。

[[240129]]

正值火辣的暑假,朋友圈已經被大家的旅行足跡刷屏了,真的十分驚嘆于那些把全國所有省基本走遍的朋友們。與此同時,也就萌生了寫篇旅行相關的內容,本次數據來源于一個對于爬蟲十分友好的旅行攻略類網站:螞蜂窩。

一、獲得城市編號

螞蜂窩中的所有城市、景點以及其他的一些信息都有一個專屬的5位數字編號,我們***步要做的就是獲取城市(直轄市+地級市)的編號,進行后續的進一步分析。 

 

以上兩個頁面就是我們的城市編碼來源。需要首先從目的地頁面獲得各省編碼,之后進入各省城市列表獲得編碼。

過程中需要Selenium進行動態數據爬取,部分代碼如下: 

  1. def find_cat_url(url):    
  2.    headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'}     
  3.  
  4.    req=request.Request(url,headers=headers)    
  5.    html=urlopen(req)    
  6.    bsObj=BeautifulSoup(html.read(),"html.parser" 
  7.    bs = bsObj.find('div',attrs={'class':'hot-list clearfix'}).find_all('dt' 
  8.    cat_url = []  
  9.    cat_name = []  
  10.    for i in range(0,len(bs)):  
  11.        for j in range(0,len(bs[i].find_all('a'))):  
  12.            cat_url.append(bs[i].find_all('a')[j].attrs['href'])  
  13.            cat_name.append(bs[i].find_all('a')[j].text)  
  14.    cat_url = ['http://www.mafengwo.cn'+cat_url[i] for i in range(0,len(cat_url))]    
  15.    return cat_url  
  16. def find_city_url(url_list):  
  17.    city_name_list = []  
  18.    city_url_list = []  
  19.    for i in range(0,len(url_list)):       
  20.  
  21.        driver = webdriver.Chrome()  
  22.        driver.maximize_window()  
  23.        url = url_list[i].replace('travel-scenic-spot/mafengwo','mdd/citylist' 
  24.        driver.get(url)  
  25.        while True
  26.             try:  
  27.                time.sleep(2)  
  28.                bs = BeautifulSoup(driver.page_source,'html.parser' 
  29.                url_set = bs.find_all('a',attrs={'data-type':'目的地'})  
  30.                city_name_list = city_name_list +[url_set[i].text.replace('\n','').split()[0] for i in range(0,len(url_set))]  
  31.                city_url_list = city_url_list+[url_set[i].attrs['data-id'for i in range(0,len(url_set))]           
  32.                 js="var q=document.documentElement.scrollTop=800"    
  33.                driver.execute_script(js)  
  34.                time.sleep(2)  
  35.                driver.find_element_by_class_name('pg-next').click()  
  36.            except 
  37.                break  
  38.        driver.close()  
  39.    return city_name_list,city_url_list  
  40. url = 'http://www.mafengwo.cn/mdd/'  
  41. url_list = find_cat_url(url)  
  42. city_name_list,city_url_list=find_city_url(url_list)  
  43. city = pd.DataFrame({'city':city_name_list,'id':city_url_list}) 

二、獲得城市信息

城市數據分別從以下幾個頁面獲取:

(a)小吃頁面 

(b)景點頁面 

(c)標簽頁面 

我們將每個城市獲取數據的過程封裝成函數,每次傳入之前獲得的城市編碼,部分代碼如下: 

  1. def get_city_info(city_name,city_code):  
  2.    this_city_base = get_city_base(city_name,city_code)  
  3.    this_city_jd = get_city_jd(city_name,city_code)  
  4.    this_city_jd['city_name'] = city_name  
  5.    this_city_jd['total_city_yj'] = this_city_base['total_city_yj' 
  6.    try:  
  7.        this_city_food = get_city_food(city_name,city_code)  
  8.        this_city_food['city_name'] = city_name  
  9.        this_city_food['total_city_yj'] = this_city_base['total_city_yj'
  10.  
  11.    except
  12.  
  13.        this_city_food=pd.DataFrame()  
  14.    return this_city_base,this_city_food,this_city_jd  
  15. def get_city_base(city_name,city_code):  
  16.    url = 'http://www.mafengwo.cn/xc/'+str(city_code)+'/'  
  17.    bsObj = get_static_url_content(url)  
  18.    node =  bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('a' 
  19.    tag = [node[i].text.split()[0] for i in range(0,len(node))]  
  20.    tag_node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('em' 
  21.    tag_count = [int(k.text) for k in tag_node]  
  22.    par = [k.attrs['href'][1:3] for k in node]  
  23.    tag_all_count = sum([int(tag_count[i]) for i in range(0,len(tag_count))])  
  24.    tag_jd_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='jd'])  
  25.    tag_cy_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='cy'])  
  26.    tag_gw_yl_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i] in ['gw','yl']])  
  27.    url = 'http://www.mafengwo.cn/yj/'+str(city_code)+'/2-0-1.html '  
  28.    bsObj = get_static_url_content(url) 
  29.  
  30.    total_city_yj = int(bsObj.find('span',{'class':'count'}).find_all('span')[1].text)  
  31.    return {'city_name':city_name,'tag_all_count':tag_all_count,'tag_jd_count':tag_jd_count,  
  32.            'tag_cy_count':tag_cy_count,'tag_gw_yl_count':tag_gw_yl_count,  
  33.            'total_city_yj':total_city_yj} 
  34.  
  35. def get_city_food(city_name,city_code):  
  36.    url = 'http://www.mafengwo.cn/cy/'+str(city_code)+'/gonglve.html'  
  37.    bsObj = get_static_url_content(url)  
  38.    food=[k.text for k in bsObj.find('ol',{'class':'list-rank'}).find_all('h3')]  
  39.    food_count=[int(k.text) for k in bsObj.find('ol',{'class':'list-rank'}).find_all('span',{'class':'trend'})]  
  40.    return pd.DataFrame({'food':food[0:len(food_count)],'food_count':food_count})  
  41. def get_city_jd(city_name,city_code):  
  42.    url = 'http://www.mafengwo.cn/jd/'+str(city_code)+'/gonglve.html'  
  43.    bsObj = get_static_url_content(url)  
  44.    node=bsObj.find('div',{'class':'row-top5'}).find_all('h3' 
  45.    jd = [k.text.split('\n')[2] for k in node]  
  46.    node=bsObj.find_all('span',{'class':'rev-total'})  
  47.    jd_count=[int(k.text.replace(' 條點評','')) for k in node]  
  48.    return pd.DataFrame({'jd':jd[0:len(jd_count)],'jd_count':jd_count}) 

三、數據分析

PART1:城市數據

首先我們看一下游記數量最多的***0城市: 

游記數量***0數量基本上與我們日常所了解的熱門城市相符,我們進一步根據各個城市游記數量獲得全國旅行目的地熱力圖: 

看到這里,是不是有種似曾相識的感覺,如果你在朋友圈曬的足跡圖與這幅圖很相符,那么說明螞蜂窩的數據與你不謀而合。

***我們看一下大家對于各個城市的印象是如何的,方法就是提取標簽中的屬性,我們將屬性分為了休閑、飲食、景點三組,分別看一下每一組屬性下大家印象最深的城市: 

看來對于螞蜂窩的用戶來說,廈門給大家留下的印象是非常深的,不僅游記數量充足,并且能從中提取的有效標簽也非常多。重慶、西安、成都也無懸念地給吃貨們留下了非常深的印象,部分代碼如下: 

  1. bar1 = Bar("餐飲類標簽排名" 
  2. bar1.add("餐飲類標簽分數", city_aggregate.sort_values('cy_point',0,False)['city_name'][0:15],  
  3.         city_aggregate.sort_values('cy_point',0,False)['cy_point'][0:15],  
  4.         is_splitline_show =False,xaxis_rotate=30)  
  5. bar2 = Bar("景點類標簽排名",title_top="30%" 
  6. bar2.add("景點類標簽分數", city_aggregate.sort_values('jd_point',0,False)['city_name'][0:15],  
  7.         city_aggregate.sort_values('jd_point',0,False)['jd_point'][0:15],  
  8.         legend_top="30%",is_splitline_show =False,xaxis_rotate=30)  
  9. bar3 = Bar("休閑類標簽排名",title_top="67.5%" 
  10. bar3.add("休閑類標簽分數", city_aggregate.sort_values('xx_point',0,False)['city_name'][0:15],  
  11.         city_aggregate.sort_values('xx_point',0,False)['xx_point'][0:15],  
  12.         legend_top="67.5%",is_splitline_show =False,xaxis_rotate=30)  
  13. grid = Grid(height=800)  
  14. grid.add(bar1, grid_bottom="75%" 
  15. grid.add(bar2, grid_bottom="37.5%",grid_top="37.5%" 
  16. grid.add(bar3, grid_top="75%"
  17.  grid.render('城市分類標簽.html'

PART2:景點數據

我們提取了各個景點評論數,并與城市游記數量進行對比,分別得到景點評論的絕對值和相對值,并據此計算景點的人氣、代表性兩個分數,最終排名***5的景點如下: 

螞蜂窩網友對于廈門真的是情有獨鐘,鼓浪嶼也成為了***人氣的景點,在城市代表性方面西塘古鎮和羊卓雍措位列前茅。暑假之際,如果擔心上排的景點人太多,不妨從下排的景點中挖掘那些人少景美的旅游地。

PART3:小吃數據

***我們看一下大家最關注的的與吃相關的數據,處理方法與PART2景點數據相似,我們分別看一下***人氣和***城市代表性的小吃。 

出乎意料,螞蜂窩網友對廈門果真愛得深沉,讓沙茶面得以超過火鍋、烤鴨、肉夾饃躋身***人氣的小吃。

在城市代表性方面,海鮮的出場頻率非常高,這點與大(ben)家(ren)的認知也不謀而合,PART2與3的部分代碼如下: 

  1. bar1 = Bar("景點人氣排名" 
  2. bar1.add("景點人氣分數", city_jd_com.sort_values('rq_point',0,False)['jd'][0:15],  
  3.         city_jd_com.sort_values('rq_point',0,False)['rq_point'][0:15],  
  4.         is_splitline_show =False,xaxis_rotate=30)  
  5. bar2 = Bar("景點代表性排名",title_top="55%" 
  6. bar2.add("景點代表性分數", city_jd_com.sort_values('db_point',0,False)['jd'][0:15],  
  7.         city_jd_com.sort_values('db_point',0,False)['db_point'][0:15],  
  8.         is_splitline_show =False,xaxis_rotate=30,legend_top="55%" 
  9. grid=Grid(height=800)  
  10. grid.add(bar1, grid_bottom="60%" 
  11. grid.add(bar2, grid_top="60%",grid_bottom="10%"
  12.  grid.render('景點排名.html'

文中所有涉及到的代碼已經發到Github上了,歡迎大家自取:

http://github.com/shujusenlin/mafengwo_data。

作者:徐麟,知乎同名專欄作者,目前就職于上海唯品會產品技術中心,哥大統計數據狗,從事數據挖掘&分析工作,喜歡用R&Python玩一些不一樣的數據。

責任編輯:未麗燕 來源: 數據森麟
相關推薦

2019-02-19 15:20:12

消息總線架構異步

2019-06-11 12:19:10

ABTest分流系統

2019-02-18 15:23:21

馬蜂窩MESLambda

2020-03-22 15:49:27

Kafka馬蜂窩大數據平臺

2020-01-03 09:53:36

Kafka集群優化

2017-09-17 10:05:20

Python景點國慶

2022-06-20 09:00:00

深度學習人工智能研究

2019-04-26 15:16:02

馬蜂窩火車票系統

2019-06-11 11:18:40

容災緩存設計

2019-03-25 15:14:19

Flutter馬蜂窩開發

2018-10-29 12:27:20

2019-03-29 08:21:51

馬蜂窩Golang并發代理

2019-02-27 15:24:54

馬蜂窩游搶單系統

2020-02-21 16:20:37

系統驅動項目管理

2019-12-17 14:59:27

數據中臺數據倉庫馬蜂窩

2018-10-26 16:00:39

程序員爬蟲馬蜂窩

2024-04-02 08:45:08

ChatGPTAI會議人工智能

2020-01-10 15:57:03

JavaScript開發 技巧

2019-04-12 14:22:40

馬蜂窩機票訂單
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 一级黄色毛片子 | 日本久久一区二区三区 | 国产大学生情侣呻吟视频 | 精品视频久久久 | 国产在线精品一区二区 | 91久久精品一区二区二区 | 成人在线免费 | 久久av网站 | 久久一二 | 精品蜜桃一区二区三区 | 久久这里有精品 | 精品一区二区免费视频 | 中国一级特黄真人毛片免费观看 | 国产免费一区二区三区 | 在线观看中文字幕亚洲 | 欧美99久久精品乱码影视 | 欧美色综合天天久久综合精品 | 男女搞网站| 精品久久久久久国产 | 国产精品美女久久久久久久网站 | 热久久性 | 中文字幕av亚洲精品一部二部 | 欧美日韩国产一区二区三区不卡 | 亚洲视频在线免费观看 | 成人免费视频观看 | 亚洲免费在线观看 | 亚洲69p| www.狠狠干| 色综合天天天天做夜夜夜夜做 | 国产亚洲精品a | 日韩三区在线观看 | 日韩欧美精品 | 亚洲网站观看 | 七七婷婷婷婷精品国产 | 精品亚洲一区二区三区四区五区 | 开操网| 欧美四虎| 亚州精品天堂中文字幕 | 亚洲在线一区 | 69视频在线播放 | 日韩影院在线 |