成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

Java實現一致性Hash算法深入研究

開發 后端 算法
在寫本文的時候,很多知識我也是邊寫邊學,難免有很多寫得不好、理解得不透徹的地方,而且代碼整體也比較糙,未有考慮到可能的各種情況。拋磚引玉,一方面,寫得不對的地方,還望網友朋友們指正;另一方面,后續我也將通過自己的工作、學習不斷完善上面的代碼。

一致性Hash算法

關于一致性Hash算法,在我之前的博文中已經有多次提到了,MemCache超詳細解讀一文中”一致性Hash算法”部分,對于為什么要使用一致性Hash算法和一致性Hash算法的算法原理做了詳細的解讀。

算法的具體原理這里再次貼上:

先構造一個長度為2 32 的整數環(這個環被稱為一致性Hash環),根據節點名稱的Hash值(其分布為[0, 2 32 -1])將服務器節點放置在這個Hash環上,然后根據數據的Key值計算得到其Hash值(其分布也為[0, 2 32 -1]),接著在Hash環上順時針查找距離這個Key值的Hash值最近的服務器節點,完成Key到服務器的映射查找。

這種算法解決了普通余數Hash算法伸縮性差的問題,可以保證在上線、下線服務器的情況下盡量有多的請求命中原來路由到的服務器。

當然,萬事不可能十全十美,一致性Hash算法比普通Hash算法更具有伸縮性,但是同時其算法實現也更為復雜,本文就來研究一下,如何利用Java代碼實現一致性Hash算法。在開始之前,先對一致性Hash算法中的幾個核心問題進行一些探究。

數據結構的選取

一致性Hash算法最先要考慮的一個問題是:構造出一個長度為2 32 的整數環,根據節點名稱的Hash值將服務器節點放置在這個Hash環上。

那么,整數環應該使用何種數據結構,才能使得運行時的時間復雜度最低?首先說明一點,關于時間復雜度, 常見的時間復雜度與時間效率的關系有如下的經驗規則:

O(1) < O(log 2 N) < O(n) < O(N * log 2 N) < O(N 2 ) < O(N 3 ) < 2N < 3N < N!

一般來說,前四個效率比較高,中間兩個差強人意,后三個比較差(只要N比較大,這個算法就動不了了)。OK,繼續前面的話題,應該如何選取數據結構,我認為有以下幾種可行的解決方案。

1、解決方案一:排序+List

我想到的第一種思路是:算出所有待加入數據結構的節點名稱的Hash值放入一個數組中,然后使用某種排序算法將其從小到大進行排序,最后將排序后的數據放入List中,采用List而不是數組是為了結點的擴展考慮。

之后,待路由的結點,只需要在List中找到第一個Hash值比它大的服務器節點就可以了 ,比如服務器節點的Hash值是[0,2,4,6,8,10],帶路由的結點是7,只需要找到第一個比7大的整數,也就是8,就是我們最終需要路由過去的服務器節點。

如果暫時不考慮前面的排序,那么這種解決方案的時間復雜度:

(1)最好的情況是第一次就找到,時間復雜度為O(1)

(2)最壞的情況是最后一次才找到,時間復雜度為O(N)

平均下來時間復雜度為O(0.5N+0.5),忽略首項系數和常數,時間復雜度為O(N)。

但是如果考慮到之前的排序,我在網上找了張圖,提供了各種排序算法的時間復雜度:

 

看得出來,排序算法要么穩定但是時間復雜度高、要么時間復雜度低但不穩定,看起來最好的歸并排序法的時間復雜度仍然有O(N * logN),稍微耗費性能了一些。

2、解決方案二:遍歷+List

既然排序操作比較耗性能,那么能不能不排序?可以的,所以進一步的,有了第二種解決方案。

解決方案使用List不變,不過可以采用遍歷的方式:

(1)服務器節點不排序,其Hash值全部直接放入一個List中

(2)帶路由的節點,算出其Hash值,由于指明了”順時針”,因此遍歷List,比待路由的節點Hash值大的算出差值并記錄,比待路由節點Hash值小的忽略

(3)算出所有的差值之后,最小的那個,就是最終需要路由過去的節點

在這個算法中,看一下時間復雜度:

1、最好情況是只有一個服務器節點的Hash值大于帶路由結點的Hash值,其時間復雜度是O(N)+O(1)=O(N+1),忽略常數項,即O(N)

2、最壞情況是所有服務器節點的Hash值都大于帶路由結點的Hash值,其時間復雜度是O(N)+O(N)=O(2N),忽略首項系數,即O(N)

所以,總的時間復雜度就是O(N)。其實算法還能更改進一些:給一個位置變量X,如果新的差值比原差值小,X替換為新的位置,否則X不變。這樣遍歷就減少了一輪,不過經過改進后的算法時間復雜度仍為O(N)。

總而言之,這個解決方案和解決方案一相比,總體來看,似乎更好了一些。

3、解決方案三:二叉查找樹

拋開List這種數據結構,另一種數據結構則是使用 二叉查找樹 。對于樹不是很清楚的朋友可以簡單看一下這篇文章樹形結構。

當然我們不能簡單地使用二叉查找樹,因為可能出現不平衡的情況。平衡二叉查找樹有AVL樹、紅黑樹等,這里使用紅黑樹,選用紅黑樹的原因有兩點:

1、紅黑樹主要的作用是用于存儲有序的數據,這其實和第一種解決方案的思路又不謀而合了,但是它的效率非常高

2、JDK里面提供了紅黑樹的代碼實現TreeMap和TreeSet

另外,以TreeMap為例,TreeMap本身提供了一個tailMap(K fromKey)方法,支持從紅黑樹中查找比fromKey大的值的集合,但并不需要遍歷整個數據結構。

使用紅黑樹,可以使得查找的時間復雜度降低為O(logN),比上面兩種解決方案,效率大大提升。

為了驗證這個說法,我做了一次測試,從大量數據中查找第一個大于其中間值的那個數據,比如10000數據就找第一個大于5000的數據(模擬平均的情況)。看一下O(N)時間復雜度和O(logN)時間復雜度運行效率的對比:

 

50000

100000

500000

1000000

4000000

ArrayList

1ms

1ms

4ms

4ms

5ms

LinkedList

4ms

7ms

11ms

13ms

17ms

TreeMap

0ms

0ms

0ms

0ms

0ms

因為再大就內存溢出了,所以只測試到4000000數據。可以看到,數據查找的效率,TreeMap是完勝的,其實再增大數據測試也是一樣的,紅黑樹的數據結構決定了任何一個大于N的最小數據,它都只需要幾次至幾十次查找就可以查到。

當然,明確一點,有利必有弊,根據我另外一次測試得到的結論是, 為了維護紅黑樹,數據插入效率TreeMap在三種數據結構里面是最差的,且插入要慢上5~10倍 。

Hash值重新計算

服務器節點我們肯定用字符串來表示,比如”192.168.1.1″、”192.168.1.2″,根據字符串得到其Hash值,那么另外一個重要 的問題就是 Hash值要重新計算,這個問題是我在測試String的hashCode()方法的時候發現的,不妨來看一下為什么要重新計算Hash值:

  1. /** 
  2. * String的hashCode()方法運算結果查看 
  3. * @author 五月的倉頡 http://www.cnblogs.com/xrq730/ 
  4. * 
  5. */ 
  6. public class StringHashCodeTest 
  7.     public static void main(String[] args) 
  8.     { 
  9.         System.out.println("192.168.0.0:111的哈希值:" + "192.168.0.0:1111".hashCode()); 
  10.         System.out.println("192.168.0.1:111的哈希值:" + "192.168.0.1:1111".hashCode()); 
  11.         System.out.println("192.168.0.2:111的哈希值:" + "192.168.0.2:1111".hashCode()); 
  12.         System.out.println("192.168.0.3:111的哈希值:" + "192.168.0.3:1111".hashCode()); 
  13.         System.out.println("192.168.0.4:111的哈希值:" + "192.168.0.4:1111".hashCode()); 
  14.     } 

我們在做集群的時候,集群點的IP以這種連續的形式存在是很正常的。看一下運行結果為:

  1. 192.168.0.0:111的哈希值:1845870087 
  2. 192.168.0.1:111的哈希值:1874499238 
  3. 192.168.0.2:111的哈希值:1903128389 
  4. 192.168.0.3:111的哈希值:1931757540 
  5. 192.168.0.4:111的哈希值:1960386691 

這個就問題大了,[0,2 32 -1]的區間之中,5個HashCode值卻只分布在這么小小的一個區間,什么概念?[0,2 32 -1]中有4294967296個數字,而我們的區間只有122516605,從概率學上講這將導致97%待路由的服務器都被路由到”192.168.0.1″這個集群點上,簡直是糟糕透了!

另外還有一個不好的地方:規定的區間是非負數,String的hashCode()方法卻會產生負數(不信用”192.168.1.0:1111″試試看就知道了)。不過這個問題好解決,取絕對值就是一種解決的辦法。

綜上,String重寫的hashCode()方法在一致性Hash算法中沒有任何實用價值,得找個算法重新計算HashCode。這種重新計算 Hash值的算法有很多,比如CRC32_HASH、FNV1_32_HASH、KETAMA_HASH等,其中KETAMA_HASH是默認的 MemCache推薦的一致性Hash算法,用別的Hash算法也可以,比如FNV1_32_HASH算法的計算效率就會高一些。

一致性Hash算法實現版本1:不帶虛擬節點

使用一致性Hash算法,盡管增強了系統的伸縮性,但是也有可能導致負載分布不均勻,解決辦法就是使用 虛擬節點代替真實節點 ,第一個代碼版本,先來個簡單的,不帶虛擬節點。

下面來看一下不帶虛擬節點的一致性Hash算法的Java代碼實現:

  1. /** 
  2. * 不帶虛擬節點的一致性Hash算法 
  3. * @author 五月的倉頡http://www.cnblogs.com/xrq730/ 
  4. * 
  5. */ 
  6. public class ConsistentHashingWithoutVirtualNode 
  7.     /** 
  8.      * 待添加入Hash環的服務器列表 
  9.      */ 
  10.     private static String[] servers = {"192.168.0.0:111""192.168.0.1:111""192.168.0.2:111"
  11.             "192.168.0.3:111""192.168.0.4:111"}; 
  12.     
  13.     /** 
  14.      * key表示服務器的hash值,value表示服務器的名稱 
  15.      */ 
  16.     private static SortedMap<Integer, String> sortedMap = 
  17.             new TreeMap<Integer, String>(); 
  18.     
  19.     /** 
  20.      * 程序初始化,將所有的服務器放入sortedMap中 
  21.      */ 
  22.     static 
  23.     { 
  24.         for (int i = 0; i < servers.length; i++) 
  25.         { 
  26.             int hash = getHash(servers[i]); 
  27.             System.out.println("[" + servers[i] + "]加入集合中, 其Hash值為" + hash); 
  28.             sortedMap.put(hash, servers[i]); 
  29.         } 
  30.         System.out.println(); 
  31.     } 
  32.     
  33.     /** 
  34.      * 使用FNV1_32_HASH算法計算服務器的Hash值,這里不使用重寫hashCode的方法,最終效果沒區別 
  35.      */ 
  36.     private static int getHash(String str) 
  37.     { 
  38.         final int p = 16777619
  39.         int hash = (int)2166136261L; 
  40.         for (int i = 0; i < str.length(); i++) 
  41.             hash = (hash ^ str.charAt(i)) * p; 
  42.         hash += hash << 13
  43.         hash ^= hash >> 7
  44.         hash += hash << 3
  45.         hash ^= hash >> 17
  46.         hash += hash << 5
  47.         
  48.         // 如果算出來的值為負數則取其絕對值 
  49.         if (hash < 0
  50.             hash = Math.abs(hash); 
  51.         return hash; 
  52.     } 
  53.     
  54.     /** 
  55.      * 得到應當路由到的結點 
  56.      */ 
  57.     private static String getServer(String node) 
  58.     { 
  59.         // 得到帶路由的結點的Hash值 
  60.         int hash = getHash(node); 
  61.         // 得到大于該Hash值的所有Map 
  62.         SortedMap<Integer, String> subMap = 
  63.                 sortedMap.tailMap(hash); 
  64.         // 第一個Key就是順時針過去離node最近的那個結點 
  65.         Integer i = subMap.firstKey(); 
  66.         // 返回對應的服務器名稱 
  67.         return subMap.get(i); 
  68.     } 
  69.     
  70.     public static void main(String[] args) 
  71.     { 
  72.         String[] nodes = {"127.0.0.1:1111""221.226.0.1:2222""10.211.0.1:3333"}; 
  73.         for (int i = 0; i < nodes.length; i++) 
  74.             System.out.println("[" + nodes[i] + "]的hash值為" + 
  75.                     getHash(nodes[i]) + ", 被路由到結點[" + getServer(nodes[i]) + "]"); 
  76.     } 

可以運行一下看一下結果:

  1. [192.168.0.0:111]加入集合中, 其Hash值為575774686 
  2. [192.168.0.1:111]加入集合中, 其Hash值為8518713 
  3. [192.168.0.2:111]加入集合中, 其Hash值為1361847097 
  4. [192.168.0.3:111]加入集合中, 其Hash值為1171828661 
  5. [192.168.0.4:111]加入集合中, 其Hash值為1764547046 
  6.  
  7. [127.0.0.1:1111]的hash值為380278925, 被路由到結點[192.168.0.0:111
  8. [221.226.0.1:2222]的hash值為1493545632, 被路由到結點[192.168.0.4:111
  9. [10.211.0.1:3333]的hash值為1393836017, 被路由到結點[192.168.0.4:111

看到經過FNV1_32_HASH算法重新計算過后的Hash值,就比原來String的hashCode()方法好多了。從運行結果來看,也沒有問題,三個點路由到的都是順時針離他們Hash值最近的那臺服務器上。

使用虛擬節點來改善一致性Hash算法

上面的一致性Hash算法實現,可以在很大程度上解決很多分布式環境下不好的路由算法導致系統伸縮性差的問題,但是會帶來另外一個問題:負載不均。

比如說有Hash環上有A、B、C三個服務器節點,分別有100個請求會被路由到相應服務器上。現在在A與B之間增加了一個節點D,這導致了原來會 路由到B上的部分節點被路由到了D上,這樣A、C上被路由到的請求明顯多于B、D上的,原來三個服務器節點上均衡的負載被打破了。 某種程度上來說,這失去了負載均衡的意義,因為負載均衡的目的本身就是為了使得目標服務器均分所有的請求 。

解決這個問題的辦法是引入虛擬節點,其工作原理是: 將一個物理節點拆分為多個虛擬節點,并且同一個物理節點的虛擬節點盡量均勻分布在Hash環上 。采取這樣的方式,就可以有效地解決增加或減少節點時候的負載不均衡的問題。

至于一個物理節點應該拆分為多少虛擬節點,下面可以先看一張圖:

橫軸表示需要為每臺福利服務器擴展的虛擬節點倍數,縱軸表示的是實際物理服務器數。可以看出,物理服務器很少,需要更大的虛擬節點;反之物理服務器 比較多,虛擬節點就可以少一些。比如有10臺物理服務器,那么差不多需要為每臺服務器增加100~200個虛擬節點才可以達到真正的負載均衡。

一致性Hash算法實現版本2:帶虛擬節點

在理解了使用虛擬節點來改善一致性Hash算法的理論基礎之后,就可以嘗試開發代碼了。編程方面需要考慮的問題是:

1、一個真實結點如何對應成為多個虛擬節點?

2、虛擬節點找到后如何還原為真實結點?

這兩個問題其實有很多解決辦法,我這里使用了一種簡單的辦法,給每個真實結點后面根據虛擬節點加上后綴再取Hash值,比 如”192.168.0.0:111″就把它變成”192.168.0.0:111&&VN0″ 到”192.168.0.0:111&&VN4″,VN就是virtual Node的縮寫,還原的時候只需要從頭截取字符串到”&&”的位置就可以了。

下面來看一下帶虛擬節點的一致性Hash算法的Java代碼實現:

  1. /** 
  2. * 帶虛擬節點的一致性Hash算法 
  3. * @author 五月的倉頡 http://www.cnblogs.com/xrq730/ 
  4. */ 
  5. public class ConsistentHashingWithVirtualNode 
  6.     /** 
  7.      * 待添加入Hash環的服務器列表 
  8.      */ 
  9.     private static String[] servers = {"192.168.0.0:111""192.168.0.1:111""192.168.0.2:111"
  10.             "192.168.0.3:111""192.168.0.4:111"}; 
  11.     
  12.     /** 
  13.      * 真實結點列表,考慮到服務器上線、下線的場景,即添加、刪除的場景會比較頻繁,這里使用LinkedList會更好 
  14.      */ 
  15.     private static List<String> realNodes = new LinkedList<String>(); 
  16.     
  17.     /** 
  18.      * 虛擬節點,key表示虛擬節點的hash值,value表示虛擬節點的名稱 
  19.      */ 
  20.     private static SortedMap<Integer, String> virtualNodes = 
  21.             new TreeMap<Integer, String>(); 
  22.     
  23.     /** 
  24.      * 虛擬節點的數目,這里寫死,為了演示需要,一個真實結點對應5個虛擬節點 
  25.      */ 
  26.     private static final int VIRTUAL_NODES = 5
  27.     
  28.     static 
  29.     { 
  30.         // 先把原始的服務器添加到真實結點列表中 
  31.         for (int i = 0; i < servers.length; i++) 
  32.             realNodes.add(servers[i]); 
  33.         
  34.         // 再添加虛擬節點,遍歷LinkedList使用foreach循環效率會比較高 
  35.         for (String str : realNodes) 
  36.         { 
  37.             for (int i = 0; i < VIRTUAL_NODES; i++) 
  38.             { 
  39.                 String virtualNodeName = str + "&&VN" + String.valueOf(i); 
  40.                 int hash = getHash(virtualNodeName); 
  41.                 System.out.println("虛擬節點[" + virtualNodeName + "]被添加, hash值為" + hash); 
  42.                 virtualNodes.put(hash, virtualNodeName); 
  43.             } 
  44.         } 
  45.         System.out.println(); 
  46.     } 
  47.     
  48.     /** 
  49.      * 使用FNV1_32_HASH算法計算服務器的Hash值,這里不使用重寫hashCode的方法,最終效果沒區別 
  50.      */ 
  51.     private static int getHash(String str) 
  52.     { 
  53.         final int p = 16777619
  54.         int hash = (int)2166136261L; 
  55.         for (int i = 0; i < str.length(); i++) 
  56.             hash = (hash ^ str.charAt(i)) * p; 
  57.         hash += hash << 13
  58.         hash ^= hash >> 7
  59.         hash += hash << 3
  60.         hash ^= hash >> 17
  61.         hash += hash << 5
  62.         
  63.         // 如果算出來的值為負數則取其絕對值 
  64.         if (hash < 0
  65.             hash = Math.abs(hash); 
  66.         return hash; 
  67.     } 
  68.     
  69.     /** 
  70.      * 得到應當路由到的結點 
  71.      */ 
  72.     private static String getServer(String node) 
  73.     { 
  74.         // 得到帶路由的結點的Hash值 
  75.         int hash = getHash(node); 
  76.         // 得到大于該Hash值的所有Map 
  77.         SortedMap<Integer, String> subMap = 
  78.                 virtualNodes.tailMap(hash); 
  79.         // 第一個Key就是順時針過去離node最近的那個結點 
  80.         Integer i = subMap.firstKey(); 
  81.         // 返回對應的虛擬節點名稱,這里字符串稍微截取一下 
  82.         String virtualNode = subMap.get(i); 
  83.         return virtualNode.substring(0, virtualNode.indexOf("&&")); 
  84.     } 
  85.     
  86.     public static void main(String[] args) 
  87.     { 
  88.         String[] nodes = {"127.0.0.1:1111""221.226.0.1:2222""10.211.0.1:3333"}; 
  89.         for (int i = 0; i < nodes.length; i++) 
  90.             System.out.println("[" + nodes[i] + "]的hash值為" + 
  91.                     getHash(nodes[i]) + ", 被路由到結點[" + getServer(nodes[i]) + "]"); 
  92.     } 

關注一下運行結果:

  1. 虛擬節點[192.168.0.0:111&&VN0]被添加, hash值為1686427075 
  2. 虛擬節點[192.168.0.0:111&&VN1]被添加, hash值為354859081 
  3. 虛擬節點[192.168.0.0:111&&VN2]被添加, hash值為1306497370 
  4. 虛擬節點[192.168.0.0:111&&VN3]被添加, hash值為817889914 
  5. 虛擬節點[192.168.0.0:111&&VN4]被添加, hash值為396663629 
  6. 虛擬節點[192.168.0.1:111&&VN0]被添加, hash值為1032739288 
  7. 虛擬節點[192.168.0.1:111&&VN1]被添加, hash值為707592309 
  8. 虛擬節點[192.168.0.1:111&&VN2]被添加, hash值為302114528 
  9. 虛擬節點[192.168.0.1:111&&VN3]被添加, hash值為36526861 
  10. 虛擬節點[192.168.0.1:111&&VN4]被添加, hash值為848442551 
  11. 虛擬節點[192.168.0.2:111&&VN0]被添加, hash值為1452694222 
  12. 虛擬節點[192.168.0.2:111&&VN1]被添加, hash值為2023612840 
  13. 虛擬節點[192.168.0.2:111&&VN2]被添加, hash值為697907480 
  14. 虛擬節點[192.168.0.2:111&&VN3]被添加, hash值為790847074 
  15. 虛擬節點[192.168.0.2:111&&VN4]被添加, hash值為2010506136 
  16. 虛擬節點[192.168.0.3:111&&VN0]被添加, hash值為891084251 
  17. 虛擬節點[192.168.0.3:111&&VN1]被添加, hash值為1725031739 
  18. 虛擬節點[192.168.0.3:111&&VN2]被添加, hash值為1127720370 
  19. 虛擬節點[192.168.0.3:111&&VN3]被添加, hash值為676720500 
  20. 虛擬節點[192.168.0.3:111&&VN4]被添加, hash值為2050578780 
  21. 虛擬節點[192.168.0.4:111&&VN0]被添加, hash值為586921010 
  22. 虛擬節點[192.168.0.4:111&&VN1]被添加, hash值為184078390 
  23. 虛擬節點[192.168.0.4:111&&VN2]被添加, hash值為1331645117 
  24. 虛擬節點[192.168.0.4:111&&VN3]被添加, hash值為918790803 
  25. 虛擬節點[192.168.0.4:111&&VN4]被添加, hash值為1232193678 
  26.  
  27. [127.0.0.1:1111]的hash值為380278925, 被路由到結點[192.168.0.0:111
  28. [221.226.0.1:2222]的hash值為1493545632, 被路由到結點[192.168.0.0:111
  29. [10.211.0.1:3333]的hash值為1393836017, 被路由到結點[192.168.0.2:111

從代碼運行結果看,每個點路由到的服務器都是Hash值順時針離它最近的那個服務器節點,沒有任何問題。

通過采取虛擬節點的方法,一個真實結點不再固定在Hash換上的某個點,而是大量地分布在整個Hash環上,這樣即使上線、下線服務器,也不會造成整體的負載不均衡。

后記

在寫本文的時候,很多知識我也是邊寫邊學,難免有很多寫得不好、理解得不透徹的地方,而且代碼整體也比較糙,未有考慮到可能的各種情況。拋磚引玉,一方面,寫得不對的地方,還望網友朋友們指正;另一方面,后續我也將通過自己的工作、學習不斷完善上面的代碼。

 

責任編輯:王雪燕 來源: 五月的倉頡
相關推薦

2022-11-10 07:49:09

hash算法代碼

2022-03-22 09:54:22

Hash算法

2016-12-19 18:41:09

哈希算法Java數據

2021-05-19 21:50:46

Hash算法測試

2021-02-05 08:00:48

哈希算法?機器

2018-08-08 15:51:44

Hash分布式算法

2017-07-25 14:38:56

數據庫一致性非鎖定讀一致性鎖定讀

2020-11-24 09:03:41

一致性MySQLMVCC

2020-03-16 11:55:28

PaxosRaft協議

2019-10-11 23:27:19

分布式一致性算法開發

2021-08-13 07:56:13

Raft算法日志

2020-07-20 08:30:37

算法哈希分布式系統

2022-01-11 17:23:51

算法負載均衡Hash

2021-07-27 08:57:10

算法一致性哈希哈希算法

2022-12-14 08:23:30

2019-12-09 10:37:27

Hash算法面試

2021-09-18 08:54:19

zookeeper一致性算法CAP

2021-02-02 12:40:50

哈希算法數據

2011-12-15 10:43:20

JavaNIO

2019-11-01 09:13:37

算法哈希緩存
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 一区二区三区亚洲 | 国产免费一区二区 | 伊人网综合在线 | 精彩视频一区二区三区 | 九九热精品视频 | www.久久国产精品 | 免费国产成人av | 日韩视频免费看 | www.久久久.com| 国产精品一级在线观看 | 国产精品久久久久久久久久免费看 | 欧美成人h版在线观看 | 国产精品一码二码三码在线 | 一区二区伦理电影 | www九色| 人人澡视频 | av资源中文在线天堂 | 色婷婷av久久久久久久 | 成人1区2区| 欧美激情精品久久久久久变态 | 欧美a v在线| 久久精品国产一区 | 日本天堂视频在线观看 | 在线视频一区二区三区 | 欧美亚州综合 | 毛片在线免费播放 | 午夜激情一区 | 国产精品久久久久久久免费大片 | 久久久高清 | 欧美精品久久久久 | 一区二区三区四区在线 | 国产精品久久一区二区三区 | 三级视频网站 | 欧美精品1区2区3区 精品国产欧美一区二区 | 久久精品91 | 亚洲av一级毛片 | 久久久91精品国产一区二区三区 | 亚洲精品久久久久久久久久久久久 | 日韩精品不卡 | 亚洲国产aⅴ成人精品无吗 国产精品永久在线观看 | 噜啊噜在线|