成人免费xxxxx在线视频软件_久久精品久久久_亚洲国产精品久久久_天天色天天色_亚洲人成一区_欧美一级欧美三级在线观看

阿里大牛實戰歸納——Kafka架構原理

開發 后端 Kafka
Kafka的topic和分區內部是如何存儲的,有什么特點?與傳統的消息系統相比,Kafka的消費模型有什么優點?Kafka如何實現分布式的數據存儲與數據讀取?快來看下文吧!

對于kafka的架構原理我們先提出幾個問題?

1.Kafka的topic和分區內部是如何存儲的,有什么特點?

2.與傳統的消息系統相比,Kafka的消費模型有什么優點?

3.Kafka如何實現分布式的數據存儲與數據讀取?

一、Kafka架構圖

阿里大牛實戰歸納——Kafka架構原理

 

1.kafka名詞解釋

在一套kafka架構中有多個Producer,多個Broker,多個Consumer,每個Producer可以對應多個Topic,每個Consumer只能對應一個ConsumerGroup。

整個Kafka架構對應一個ZK集群,通過ZK管理集群配置,選舉Leader,以及在consumer group發生變化時進行rebalance。

名稱

解釋

Broker

消息中間件處理節點,一個Kafka節點就是一個broker,一個或者多個Broker可以組成一個Kafka集群

Topic

主題,Kafka根據topic對消息進行歸類,發布到Kafka集群的每條消息都需要指定一個topic

Producer

消息生產者,向Broker發送消息的客戶端

Consumer

消息消費者,從Broker讀取消息的客戶端

ConsumerGroup

每個Consumer屬于一個特定的Consumer Group,一條消息可以發送到多個不同的Consumer Group,但是一個Consumer Group中只能有一個Consumer能夠消費該消息

Partition

物理上的概念,一個topic可以分為多個partition,每個partition內部是有序的

2.Topic和Partition

在Kafka中的每一條消息都有一個topic。一般來說在我們應用中產生不同類型的數據,都可以設置不同的主題。一個主題一般會有多個消息的訂閱者,當生產者發布消息到某個主題時,訂閱了這個主題的消費者都可以接收到生產者寫入的新消息。

kafka為每個主題維護了分布式的分區(partition)日志文件,每個partition在kafka存儲層面是append log。任何發布到此partition的消息都會被追加到log文件的尾部,在分區中的每條消息都會按照時間順序分配到一個單調遞增的順序編號,也就是我們的offset,offset是一個long型的數字,我們通過這個offset可以確定一條在該partition下的唯一消息。在partition下面是保證了有序性,但是在topic下面沒有保證有序性。

阿里大牛實戰歸納——Kafka架構原理

 

在上圖中在我們的生產者會決定發送到哪個Partition。

  1. 如果沒有Key值則進行輪詢發送。
  2. 如果有Key值,對Key值進行Hash,然后對分區數量取余,保證了同一個Key值的會被路由到同一個分區,如果想隊列的強順序一致性,可以讓所有的消息都設置為同一個Key。

3.消費模型

消息由生產者發送到kafka集群后,會被消費者消費。一般來說我們的消費模型有兩種:推送模型(psuh)和拉取模型(pull)

基于推送模型的消息系統,由消息代理記錄消費狀態。消息代理將消息推送到消費者后,標記這條消息為已經被消費,但是這種方式無法很好地保證消費的處理語義。比如當我們把已經把消息發送給消費者之后,由于消費進程掛掉或者由于網絡原因沒有收到這條消息,如果我們在消費代理將其標記為已消費,這個消息就***丟失了。如果我們利用生產者收到消息后回復這種方法,消息代理需要記錄消費狀態,這種不可取。如果采用push,消息消費的速率就完全由消費代理控制,一旦消費者發生阻塞,就會出現問題。

Kafka采取拉取模型(poll),由自己控制消費速度,以及消費的進度,消費者可以按照任意的偏移量進行消費。比如消費者可以消費已經消費過的消息進行重新處理,或者消費最近的消息等等。

4.網絡模型

4.1 KafkaClient --單線程Selector

阿里大牛實戰歸納——Kafka架構原理

 

單線程模式適用于并發鏈接數小,邏輯簡單,數據量小。

在kafka中,consumer和producer都是使用的上面的單線程模式。這種模式不適合kafka的服務端,在服務端中請求處理過程比較復雜,會造成線程阻塞,一旦出現后續請求就會無法處理,會造成大量請求超時,引起雪崩。而在服務器中應該充分利用多線程來處理執行邏輯。

4.2 Kafka--server -- 多線程Selector

阿里大牛實戰歸納——Kafka架構原理

 

在kafka服務端采用的是多線程的Selector模型,Acceptor運行在一個單獨的線程中,對于讀取操作的線程池中的線程都會在selector注冊read事件,負責服務端讀取請求的邏輯。成功讀取后,將請求放入message queue共享隊列中。然后在寫線程池中,取出這個請求,對其進行邏輯處理,即使某個請求線程阻塞了,還有后續的縣城從消息隊列中獲取請求并進行處理,在寫線程中處理完邏輯處理,由于注冊了OP_WIRTE事件,所以還需要對其發送響應。

5.高可靠分布式存儲模型

在Kafka中保證高可靠模型的依靠的是副本機制,有了副本機制之后,就算機器宕機也不會發生數據丟失。

5.1高性能的日志存儲

kafka一個topic下面的所有消息都是以partition的方式分布式的存儲在多個節點上。同時在kafka的機器上,每個Partition其實都會對應一個日志目錄,在目錄下面會對應多個日志分段(LogSegment)。LogSegment文件由兩部分組成,分別為“.index”文件和“.log”文件,分別表示為segment索引文件和數據文件。這兩個文件的命令規則為:partition全局的***個segment從0開始,后續每個segment文件名為上一個segment文件***一條消息的offset值,數值大小為64位,20位數字字符長度,沒有數字用0填充,如下,假設有1000條消息,每個LogSegment大小為100,下面展現了900-1000的索引和Log:

阿里大牛實戰歸納——Kafka架構原理

 

由于kafka消息數據太大,如果全部建立索引,即占了空間又增加了耗時,所以kafka選擇了稀疏索引的方式,這樣的話索引可以直接進入內存,加快偏查詢速度。

簡單介紹一下如何讀取數據,如果我們要讀取第911條數據首先***步,找到他是屬于哪一段的,根據二分法查找到他屬于的文件,找到0000900.index和00000900.log之后,然后去index中去查找 (911-900) =11這個索引或者小于11最近的索引,在這里通過二分法我們找到了索引是[10,1367]然后我們通過這條索引的物理位置1367,開始往后找,直到找到911條數據。

上面講的是如果要找某個offset的流程,但是我們大多數時候并不需要查找某個offset,只需要按照順序讀即可,而在順序讀中,操作系統會對內存和磁盤之間添加page cahe,也就是我們平常見到的預讀操作,所以我們的順序讀操作時速度很快。但是kafka有個問題,如果分區過多,那么日志分段也會很多,寫的時候由于是批量寫,其實就會變成隨機寫了,隨機I/O這個時候對性能影響很大。所以一般來說Kafka不能有太多的partition。針對這一點,RocketMQ把所有的日志都寫在一個文件里面,就能變成順序寫,通過一定優化,讀也能接近于順序讀。

可以思考一下:1.為什么需要分區,也就是說主題只有一個分區,難道不行嗎?2.日志為什么需要分段

5.2副本機制

Kafka的副本機制是多個服務端節點對其他節點的主題分區的日志進行復制。當集群中的某個節點出現故障,訪問故障節點的請求會被轉移到其他正常節點(這一過程通常叫Reblance),kafka每個主題的每個分區都有一個主副本以及0個或者多個副本,副本保持和主副本的數據同步,當主副本出故障時就會被替代。

阿里大牛實戰歸納——Kafka架構原理

 

在Kafka中并不是所有的副本都能被拿來替代主副本,所以在kafka的leader節點中維護著一個ISR(In sync Replicas)集合,翻譯過來也叫正在同步中集合,在這個集合中的需要滿足兩個條件:

  • 節點必須和ZK保持連接
  • 在同步的過程中這個副本不能落后主副本太多

另外還有個AR(Assigned Replicas)用來標識副本的全集,OSR用來表示由于落后被剔除的副本集合,所以公式如下:ISR = leader + 沒有落后太多的副本; AR = OSR+ ISR;

這里先要說下兩個名詞:HW(高水位)是consumer能夠看到的此partition的位置,LEO是每個partition的log***一條Message的位置。HW能保證leader所在的broker失效,該消息仍然可以從新選舉的leader中獲取,不會造成消息丟失。

當producer向leader發送數據時,可以通過request.required.acks參數來設置數據可靠性的級別:

  • 1(默認):這意味著producer在ISR中的leader已成功收到的數據并得到確認后發送下一條message。如果leader宕機了,則會丟失數據。
  • 0:這意味著producer無需等待來自broker的確認而繼續發送下一批消息。這種情況下數據傳輸效率***,但是數據可靠性確是***的。
  • -1:producer需要等待ISR中的所有follower都確認接收到數據后才算一次發送完成,可靠性***。但是這樣也不能保證數據不丟失,比如當ISR中只有leader時(其他節點都和zk斷開連接,或者都沒追上),這樣就變成了acks=1的情況。 
責任編輯:龐桂玉 來源: 今天頭條
相關推薦

2021-04-09 08:54:14

Kafka源碼架構開發技術

2021-06-09 10:29:23

Kafka架構組件

2024-10-30 10:06:51

2021-12-07 07:32:09

kafka架構原理

2018-05-24 09:24:27

2018-05-14 09:00:23

NB架構師素質

2013-05-17 15:34:45

2019-08-05 07:58:01

分布式架構系統

2020-03-04 08:47:10

Kafka架構原理

2018-08-20 08:30:05

Kafka架構系統

2019-09-23 09:46:58

能力模型技術

2019-07-08 08:44:24

阿里技術架構師

2011-03-08 10:15:08

HTML 5

2019-04-28 09:37:21

技術架構圖開源

2020-10-10 08:20:27

Spring Boot運行原理代碼

2018-04-02 10:00:27

技術快速成長

2020-09-13 13:26:10

Kafka消費者控制器

2025-05-06 03:10:00

KEDASpringRocketMQ

2019-08-12 09:19:12

阿里結構化思維

2025-03-04 02:20:00

EurekaNetflixSpring
點贊
收藏

51CTO技術棧公眾號

主站蜘蛛池模板: 亚洲91| 精品亚洲一区二区三区 | 亚洲欧美在线观看 | 91精品在线看 | 一区二区av | 欧美aaaaaaaaaa | 91视频在线看| 日韩精品无码一区二区三区 | 精品久久香蕉国产线看观看亚洲 | 国产日产精品一区二区三区四区 | 国产精品永久久久久 | 久久青草av| 日韩电影中文字幕 | 秋霞在线一区二区 | 日日干夜夜操天天操 | 天天草天天干天天 | 欧洲一级毛片 | 一区二区三区在线 | 久久精品无码一区二区三区 | 久久精品一区二区三区四区 | 国产精品不卡一区 | 日本激情视频网 | www.嫩草 | 午夜丰满少妇一级毛片 | 国产午夜精品一区二区三区 | 国产成人精品免费 | 久久99国产精一区二区三区 | 狠狠干五月天 | 亚洲h在线观看 | 欧美13videosex性极品 | 手机在线一区二区三区 | 狠狠操婷婷 | 久久久久久久国产精品影院 | 在线观看视频中文字幕 | 久久精品小视频 | 91久久北条麻妃一区二区三区 | 日日操操 | 亚洲精品乱码久久久久久按摩观 | 午夜视频网 | 99视频免费| a国产视频 |